2,566 research outputs found

    High-fidelity rendering on shared computational resources

    Get PDF
    The generation of high-fidelity imagery is a computationally expensive process and parallel computing has been traditionally employed to alleviate this cost. However, traditional parallel rendering has been restricted to expensive shared memory or dedicated distributed processors. In contrast, parallel computing on shared resources such as a computational or a desktop grid, offers a low cost alternative. But, the prevalent rendering systems are currently incapable of seamlessly handling such shared resources as they suffer from high latencies, restricted bandwidth and volatility. A conventional approach of rescheduling failed jobs in a volatile environment inhibits performance by using redundant computations. Instead, clever task subdivision along with image reconstruction techniques provides an unrestrictive fault-tolerance mechanism, which is highly suitable for high-fidelity rendering. This thesis presents novel fault-tolerant parallel rendering algorithms for effectively tapping the enormous inexpensive computational power provided by shared resources. A first of its kind system for fully dynamic high-fidelity interactive rendering on idle resources is presented which is key for providing an immediate feedback to the changes made by a user. The system achieves interactivity by monitoring and adapting computations according to run-time variations in the computational power and employs a spatio-temporal image reconstruction technique for enhancing the visual fidelity. Furthermore, algorithms described for time-constrained offline rendering of still images and animation sequences, make it possible to deliver the results in a user-defined limit. These novel methods enable the employment of variable resources in deadline-driven environments

    Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    Get PDF
    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers

    Interactive global illumination on the CPU

    Get PDF
    Computing realistic physically-based global illumination in real-time remains one of the major goals in the fields of rendering and visualisation; one that has not yet been achieved due to its inherent computational complexity. This thesis focuses on CPU-based interactive global illumination approaches with an aim to develop generalisable hardware-agnostic algorithms. Interactive ray tracing is reliant on spatial and cache coherency to achieve interactive rates which conflicts with needs of global illumination solutions which require a large number of incoherent secondary rays to be computed. Methods that reduce the total number of rays that need to be processed, such as Selective rendering, were investigated to determine how best they can be utilised. The impact that selective rendering has on interactive ray tracing was analysed and quantified and two novel global illumination algorithms were developed, with the structured methodology used presented as a framework. Adaptive Inter- leaved Sampling, is a generalisable approach that combines interleaved sampling with an adaptive approach, which uses efficient component-specific adaptive guidance methods to drive the computation. Results of up to 11 frames per second were demonstrated for multiple components including participating media. Temporal Instant Caching, is a caching scheme for accelerating the computation of diffuse interreflections to interactive rates. This approach achieved frame rates exceeding 9 frames per second for the majority of scenes. Validation of the results for both approaches showed little perceptual difference when comparing against a gold-standard path-traced image. Further research into caching led to the development of a new wait-free data access control mechanism for sharing the irradiance cache among multiple rendering threads on a shared memory parallel system. By not serialising accesses to the shared data structure the irradiance values were shared among all the threads without any overhead or contention, when reading and writing simultaneously. This new approach achieved efficiencies between 77% and 92% for 8 threads when calculating static images and animations. This work demonstrates that, due to the flexibility of the CPU, CPU-based algorithms remain a valid and competitive choice for achieving global illumination interactively, and an alternative to the generally brute-force GPU-centric algorithms

    Doctor of Philosophy

    Get PDF
    dissertationRay tracing presents an efficient rendering algorithm for scientific visualization using common visualization tools and scales with increasingly large geometry counts while allowing for accurate physically-based visualization and analysis, which enables enhanced rendering and new visualization techniques. Interactivity is of great importance for data exploration and analysis in order to gain insight into large-scale data. Increasingly large data sizes are pushing the limits of brute-force rasterization algorithms present in the most widely-used visualization software. Interactive ray tracing presents an alternative rendering solution which scales well on multicore shared memory machines and multinode distributed systems while scaling with increasing geometry counts through logarithmic acceleration structure traversals. Ray tracing within existing tools also provides enhanced rendering options over current implementations, giving users additional insight from better depth cues while also enabling publication-quality rendering and new models of visualization such as replicating photographic visualization techniques

    An asynchronous method for cloud-based rendering

    Get PDF
    Interactive high-fidelity rendering is still unachievable on many consumer devices. Cloud gaming services have shown promise in delivering interactive graphics beyond the individual capabilities of user devices. However, a number of shortcomings are manifest in these systems: high network bandwidths are required for higher resolutions and input lag due to network fluctuations heavily disrupts user experience. In this paper, we present a scalable solution for interactive high-fidelity graphics based on a distributed rendering pipeline where direct lighting is computed on the client device and indirect lighting in the cloud. The client device keeps a local cache for indirect lighting which is asynchronously updated using an object space representation; this allows us to achieve interactive rates that are unconstrained by network performance for a wide range of display resolutions that are also robust to input lag. Furthermore, in multi-user environments, the computation of indirect lighting is amortised over participating clients

    High-fidelity graphics using unconventional distributed rendering approaches

    Get PDF
    High-fidelity rendering requires a substantial amount of computational resources to accurately simulate lighting in virtual environments. While desktop computing, with the aid of modern graphics hardware, has shown promise in delivering realistic rendering at interactive rates, real-time rendering of moderately complex scenes is still unachievable on the majority of desktop machines and the vast plethora of mobile computing devices that have recently become commonplace. This work provides a wide range of computing devices with high-fidelity rendering capabilities via oft-unused distributed computing paradigms. It speeds up the rendering process on formerly capable devices and provides full functionality to incapable devices. Novel scheduling and rendering algorithms have been designed to best take advantage of the characteristics of these systems and demonstrate the efficacy of such distributed methods. The first is a novel system that provides multiple clients with parallel resources for rendering a single task, and adapts in real-time to the number of concurrent requests. The second is a distributed algorithm for the remote asynchronous computation of the indirect diffuse component, which is merged with locally-computed direct lighting for a full global illumination solution. The third is a method for precomputing indirect lighting information for dynamically-generated multi-user environments by using the aggregated resources of the clients themselves. The fourth is a novel peer-to-peer system for improving the rendering performance in multi-user environments through the sharing of computation results, propagated via a mechanism based on epidemiology. The results demonstrate that the boundaries of the distributed computing typically used for computer graphics can be significantly and successfully expanded by adapting alternative distributed methods

    Photorealistic physically based render engines: a comparative study

    Full text link
    PĂ©rez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Realtime ray tracing and interactive global illumination

    Get PDF
    One of the most sought-for goals in computer graphics is to generate "realism in real time". i.e. the generation of realistically looking images at realtime frame rates. Today, virtually all approaches towards realtime rendering use graphics hardware, which is based almost exclusively on triangle rasterization. Unfortunately, though this technology has seen tremendous progress over the last few years, for many applications it is currently reaching its limits in both model complexity, supported features, and achievable realism. An alternative to triangle rasterizations is the ray tracing algorithm, which is well-known for its higher flexibility, its generally higher achievable realism, and its superior scalability in both model size and compute power. However, ray tracing is also computationally demanding and thus so far is used almost exclusively for high-quality offline rendering tasks. This dissertation focuses on the question why ray tracing is likely to soon play a larger role for interactive applications, and how this scenario can be reached. To this end, we discuss the RTRT/OpenRT realtime ray tracing system, a software based ray tracing system that achieves interactive to realtime frame rates on todays commodity CPUs. In particular, we discuss the overall system design, the efficient implementation of the core ray tracing algorithms, techniques for handling dynamic scenes, an efficient parallelization framework, and an OpenGL-like low-level API. Taken together, these techniques form a complete realtime rendering engine that supports massively complex scenes, highley realistic and physically correct shading, and even physically based lighting simulation at interactive rates. In the last part of this thesis we then discuss the implications and potential of realtime ray tracing on global illumination, and how the availability of this new technology can be leveraged to finally achieve interactive global illumination - the physically correct simulation of light transport at interactive rates.Eines der wichtigsten Ziele der Computer-Graphik ist die Generierung von "Realismus in Echtzeit\u27; — die Erzeugung von realistisch wirkenden, computer- generierten Bildern in Echtzeit. Heutige Echtzeit-Graphikanwendungen werden derzeit zum überwiegenden Teil mit schneller Graphik-Hardware realisiert, welche zum aktuellen Stand der Technik fast ausschliesslich auf dem Dreiecksrasterisierungsalgorithmus basiert. Obwohl diese Rasterisierungstechnologie in den letzten Jahren zunehmend beeindruckende Fortschritte gemacht hat, stößt sie heutzutage zusehends an ihre Grenzen, speziell im Hinblick auf Modellkomplexität, unterstützte Beleuchtungseffekte, und erreichbaren Realismus. Eine Alternative zur Dreiecksrasterisierung ist das "Ray-Tracing\u27; (Stahl-Rückverfolgung), welches weithin bekannt ist für seine höhere Flexibilität, seinen im Großen und Ganzen höheren erreichbaren Realismus, und seine bessere Skalierbarkeit sowohl in Szenengröße als auch in Rechner-Kapazitäten. Allerdings ist Ray-Tracing ebenso bekannt für seinen hohen Rechenbedarf, und wird daher heutzutage fast ausschließlich für die hochqualitative, nichtinteraktive Bildsynthese benutzt. Diese Dissertation behandelt die Gründe warum Ray-Tracing in näherer Zukunft voraussichtlich eine größere Rolle für interaktive Graphikanwendungen spielen wird, und untersucht, wie dieses Szenario des Echtzeit Ray-Tracing erreicht werden kann. Hierfür stellen wir das RTRT/OpenRT Echtzeit Ray-Tracing System vor, ein software-basiertes Ray-Tracing System, welches es erlaubt, interaktive Performanz auf heutigen Standard-PC-Prozessoren zu erreichen. Speziell diskutieren wir das grundlegende System-Design, die effiziente Implementierung der Kern-Algorithmen, Techniken zur Unterstützung von dynamischen Szenen, ein effizientes Parallelisierungs-Framework, und eine OpenGL-ähnliche Anwendungsschnittstelle. In ihrer Gesamtheit formen diese Techniken ein komplettes Echtzeit-Rendering-System, welches es erlaubt, extrem komplexe Szenen, hochgradig realistische und physikalisch korrekte Effekte, und sogar physikalisch-basierte Beleuchtungssimulation interaktiv zu berechnen. Im letzten Teil der Dissertation behandeln wir dann die Implikationen und das Potential, welches Echtzeit Ray-Tracing für die Globale Beleuchtungssimulation bietet, und wie die Verfügbarkeit dieser neuen Technologie benutzt werden kann, um letztendlich auch Globale Belechtung — die physikalisch korrekte Simulation des Lichttransports — interaktiv zu berechnen

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore