120 research outputs found

    WristOrigami: Exploring foldable design for multi-display smartwatch

    Get PDF
    We present WristOrigami, an origami-inspired design concept and system extending the interaction with smartwatches through a foldable structure with multiple on-wrist displays. The current design provides extra affordances via folding, flipping, and elastic pulling actions on a multidisplay smartwatch. To motivate the design of WristOrigami, we developed a taxonomy that could be useful for analyzing and characterizing the origami-inspired multi-display smartwatch interaction. Through a participatory-design study with a set of prototypes with different levels of fidelity, we investigated users\u27 perception of WristOrigami in a wide range of applications with the presented features, and summarized a list of common shape configurations. We summarized our findings into seven design recommendations, to inform the future design of foldable smartwatch interactions. We further developed a set of application demonstrations as proofs-of-concept

    Fluid Transformers and Creative Analogies: Exploring Large Language Models' Capacity for Augmenting Cross-Domain Analogical Creativity

    Full text link
    Cross-domain analogical reasoning is a core creative ability that can be challenging for humans. Recent work has shown some proofs-of concept of Large language Models' (LLMs) ability to generate cross-domain analogies. However, the reliability and potential usefulness of this capacity for augmenting human creative work has received little systematic exploration. In this paper, we systematically explore LLMs capacity to augment cross-domain analogical reasoning. Across three studies, we found: 1) LLM-generated cross-domain analogies were frequently judged as helpful in the context of a problem reformulation task (median 4 out of 5 helpfulness rating), and frequently (~80% of cases) led to observable changes in problem formulations, and 2) there was an upper bound of 25% of outputs bring rated as potentially harmful, with a majority due to potentially upsetting content, rather than biased or toxic content. These results demonstrate the potential utility -- and risks -- of LLMs for augmenting cross-domain analogical creativity

    Maker Math: Exploring Mathematics through Digitally Fabricated Tools with K–12 In-Service Teachers

    Get PDF
    This paper reports on nine elementary, middle, and high school in-service teachers who participated in a series of workshops aimed at exploring the wonder, joy, and beauty of mathematics through the creation and application of digitally fabricated tools (i.e., laser-cut and 3D printed). Using the Technological Pedagogical and Content Knowledge (TPACK) framework to investigate technological, pedagogical, contextual, and content knowledge, researchers applied qualitative methods to uncover the affordances and constraints of teaching and learning math concepts with digitally fabricated tools and examined how the workshops supported broadening participation in mathematics by focusing on the connections between mathematical inquiry, nature, and the arts. Affordances include opportunities for hands-on learning, visual support at the secondary level, and real-world connections that go beyond the state standards. Barriers include purchasing a laser-cutter, ventilation and noise issues, time constraints, misalignment with school and district priorities, and a lack of administrative support. All participants indicated that they were interested in additional workshops focused on designing their own digitally fabricated mathematics tools that better align with their grade level(s) and standards

    Development of a Fabrication Technique for Soft Planar Inflatable Composites

    Get PDF
    Soft robotics is a rapidly growing field in robotics that combines aspects of biologically inspired characteristics to unorthodox methods capable of conforming and/or adapting to unknown tasks or environments that would otherwise be improbable or complex with conventional robotic technologies. The field of soft robotics has grown rapidly over the past decade with increasing popularity and relevance to real-world applications. However, the means of fabricating these soft, compliant and intricate robots still poses a fundamental challenge, due to the liberal use of soft materials that are difficult to manipulate in their original state such as elastomers and fabric. These material properties rely on informal design approaches and bespoke fabrication methods to build soft systems. As such, there are a limited variety of fabrication techniques used to develop soft robots which hinders the scalability of robots and the time to manufacture, thus limiting their development. This research focuses towards developing a novel fabrication method for constructing soft planar inflatable composites. The fundamental method is based on a sub-set of additive manufacturing known as composite layering. The approach is designed from a planar manner and takes layers of elastomeric materials, embedded strain-limiting and mask layers. These components are then built up through a layer-by-layer fabrication method with the use of a bespoke film applicator set-up. This enables the fabrication of millimetre-scale soft inflatable composites with complex integrated masks and/or strain-limiting layers. These inflatable composites can then be cut into a desired shape via laser cutting or ablation. A design approach was also developed to expand the functionality of these inflatable composites through modelling and simulation via finite element analysis. Proof of concept prototypes were designed and fabricated to enable pneumatic driven actuation in the form of bending soft actuators, adjustable stiffness sensor, and planar shape change. This technique highlights the feasibility of the fabrication method and the value of its use in creating multi-material composite soft actuators which are thin, compact, flexible, and stretchable and can be applicable towards real-world application
    • …
    corecore