76,391 research outputs found

    Building Near-Real-Time Processing Pipelines with the Spark-MPI Platform

    Full text link
    Advances in detectors and computational technologies provide new opportunities for applied research and the fundamental sciences. Concurrently, dramatic increases in the three Vs (Volume, Velocity, and Variety) of experimental data and the scale of computational tasks produced the demand for new real-time processing systems at experimental facilities. Recently, this demand was addressed by the Spark-MPI approach connecting the Spark data-intensive platform with the MPI high-performance framework. In contrast with existing data management and analytics systems, Spark introduced a new middleware based on resilient distributed datasets (RDDs), which decoupled various data sources from high-level processing algorithms. The RDD middleware significantly advanced the scope of data-intensive applications, spreading from SQL queries to machine learning to graph processing. Spark-MPI further extended the Spark ecosystem with the MPI applications using the Process Management Interface. The paper explores this integrated platform within the context of online ptychographic and tomographic reconstruction pipelines.Comment: New York Scientific Data Summit, August 6-9, 201

    Using visual analytics to develop situation awareness in astrophysics

    Get PDF
    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    From Big Data to Big Displays: High-Performance Visualization at Blue Brain

    Full text link
    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.Comment: ISC 2017 Visualization at Scale worksho

    Applied business analytics approach to IT projects – Methodological framework

    Full text link
    The design and implementation of a big data project differs from a typical business intelligence project that might be presented concurrently within the same organization. A big data initiative typically triggers a large scale IT project that is expected to deliver the desired outcomes. The industry has identified two major methodologies for running a data centric project, in particular SEMMA (Sample, Explore, Modify, Model and Assess) and CRISP-DM (Cross Industry Standard Process for Data Mining). More general, the professional organizations PMI (Project Management Institute) and IIBA (International Institute of Business Analysis) have defined their methods for project management and business analysis based on the best current industry practices. However, big data projects place new challenges that are not considered by the existing methodologies. The building of end-to-end big data analytical solution for optimization of the supply chain, pricing and promotion, product launch, shop potential and customer value is facing both business and technical challenges. The most common business challenges are unclear and/or poorly defined business cases; irrelevant data; poor data quality; overlooked data granularity; improper contextualization of data; unprepared or bad prepared data; non-meaningful results; lack of skill set. Some of the technical challenges are related to lag of resources and technology limitations; availability of data sources; storage difficulties; security issues; performance problems; little flexibility; and ineffective DevOps. This paper discusses an applied business analytics approach to IT projects and addresses the above-described aspects. The authors present their work on research and development of new methodological framework and analytical instruments applicable in both business endeavors, and educational initiatives, targeting big data. The proposed framework is based on proprietary methodology and advanced analytics tools. It is focused on the development and the implementation of practical solutions for project managers, business analysts, IT practitioners and Business/Data Analytics students. Under discussion are also the necessary skills and knowledge for the successful big data business analyst, and some of the main organizational and operational aspects of the big data projects, including the continuous model deployment
    corecore