2,797 research outputs found

    Dynamic Trace-Based Data Dependency Analysis for Parallelization of C Programs

    Get PDF
    Writing parallel code is traditionally considered a difficult task, even when it is tackled from the beginning of a project. In this paper, we demonstrate an innovative toolset that faces this challenge directly. It provides the software developers with profile data and directs them to possible top-level, pipeline-style parallelization opportunities for an arbitrary sequential C program. This approach is complementary to the methods based on static code analysis and automatic code rewriting and does not impose restrictions on the structure of the sequential code or the parallelization style, even though it is mostly aimed at coarse-grained task-level parallelization. The proposed toolset has been utilized to define parallel code organizations for a number of real-world representative applications and is based on and is provided as free source

    International Computer and Information Literacy Study: Assessment Framework

    Get PDF
    The purpose of the International Computer and Information Literacy Study 2013 (ICILS 2013) is to investigate, in a range of countries, the ways in which young people are developing computer and information literacy (CIL) to support their capacity to participate in the digital age. To achieve this aim, the study will assess student achievement through an authentic computer-based assessment of CIL administered to students in their eighth year of schooling. It will also collect and report on analyses of data about student use of computers and other digital devices as well as students’ attitudes toward the use of computers and other digital tools. The purpose of is publication is to articulate the basic structure of the study. It provides a description of the field and the constructs to be measured. It also outlines the design and content of the measurement instruments, sets down the rationale for those designs, and describes how measures generated by those instruments relate to the constructs. In addition, it hypothesizes relations between constructs so as to provide the foundation for some of the analyses that follow. Above all, the framework links ICILS to other work in the field. The contents of this assessment framework combine theory and practice in an explication of “both the ‘what’ and the ‘how’” (Jago, 2009, p. 1) of ICILS

    Nmag micromagnetic simulation tool - software engineering lessons learned

    Full text link
    We review design and development decisions and their impact for the open source code Nmag from a software engineering in computational science point of view. We summarise lessons learned and recommendations for future computational science projects. Key lessons include that encapsulating the simulation functionality in a library of a general purpose language, here Python, provides great flexibility in using the software. The choice of Python for the top-level user interface was very well received by users from the science and engineering community. The from-source installation in which required external libraries and dependencies are compiled from a tarball was remarkably robust. In places, the code is a lot more ambitious than necessary, which introduces unnecessary complexity and reduces main- tainability. Tests distributed with the package are useful, although more unit tests and continuous integration would have been desirable. The detailed documentation, together with a tutorial for the usage of the system, was perceived as one of its main strengths by the community.Comment: 7 pages, 5 figures, Software Engineering for Science, ICSE201

    Computer processing support, volume 4

    Get PDF
    There are no author-identified significant results in this report

    A gentle transition from Java programming to Web Services using XML-RPC

    Get PDF
    Exposing students to leading edge vocational areas of relevance such as Web Services can be difficult. We show a lightweight approach by embedding a key component of Web Services within a Level 3 BSc module in Distributed Computing. We present a ready to use collection of lecture slides and student activities based on XML-RPC. In addition we show that this material addresses the central topics in the context of web services as identified by Draganova (2003)

    Integrated use of LANDSAT data for state resource management

    Get PDF
    There are no author-identified significant results in this report

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF

    Development of a static feed water electrolysis system

    Get PDF
    A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated

    Centaur operations at the space station

    Get PDF
    A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads

    Design and verification of Guidance, Navigation and Control systems for space applications

    Get PDF
    In the last decades, systems have strongly increased their complexity in terms of number of functions that can be performed and quantity of relationships between functions and hardware as well as interactions of elements and disciplines concurring to the definition of the system. The growing complexity remarks the importance of defining methods and tools that improve the design, verification and validation of the system process: effectiveness and costs reduction without loss of confidence in the final product are the objectives that have to be pursued. Within the System Engineering context, the modern Model and Simulation based approach seems to be a promising strategy to meet the goals, because it reduces the wasted resources with respect to the traditional methods, saving money and tedious works. Model Based System Engineering (MBSE) starts from the idea that it is possible at any moment to verify, through simulation sessions and according to the phase of the life cycle, the feasibility, the capabilities and the performances of the system. Simulation is used during the engineering process and can be classified from fully numerical (i.e. all the equipment and conditions are reproduced as virtual model) to fully integrated hardware simulation (where the system is represented by real hardware and software modules in their operational environment). Within this range of simulations, a few important stages can be defined: algorithm in the loop (AIL), software in the loop (SIL), controller in the loop (CIL), hardware in the loop (HIL), and hybrid configurations among those. The research activity, in which this thesis is inserted, aims at defining and validating an iterative methodology (based on Model and Simulation approach) in support of engineering teams and devoted to improve the effectiveness of the design and verification of a space system with particular interest in Guidance Navigation and Control (GNC) subsystem. The choice of focusing on GNC derives from the common interest and background of the groups involved in this research program (ASSET at Politecnico di Torino and AvioSpace, an EADS company). Moreover, GNC system is sufficiently complex (demanding both specialist knowledge and system engineer skills) and vital for whatever spacecraft and, last but not least the verification of its behavior is difficult on ground because strong limitations on dynamics and environment reproduction arise. Considering that the verification should be performed along the entire product life cycle, a tool and a facility, a simulator, independent from the complexity level of the test and the stage of the project, is needed. This thesis deals with the design of the simulator, called StarSim, which is the real heart of the proposed methodology. It has been entirely designed and developed from the requirements definition to the software implementation and hardware construction, up to the assembly, integration and verification of the first simulator release. In addition, the development of this technology met the modern standards on software development and project management. StarSim is a unique and self-contained platform: this feature allows to mitigate the risk of incompatibility, misunderstandings and loss of information that may arise using different software, simulation tools and facilities along the various phases. Modularity, flexibility, speed, connectivity, real time operation, fidelity with real world, ease of data management, effectiveness and congruence of the outputs with respect to the inputs are the sought-after features in the StarSim design. For every iteration of the methodology, StarSim guarantees the possibility to verify the behavior of the system under test thanks to the permanent availability of virtual models, that substitute all those elements not yet available and all the non-reproducible dynamics and environmental conditions. StarSim provides a furnished and user friendly database of models and interfaces that cover different levels of detail and fidelity, and supports the updating of the database allowing the user to create custom models (following few, simple rules). Progressively, pieces of the on board software and hardware can be introduced without stopping the process of design and verification, avoiding delays and loss of resources. StarSim has been used for the first time with the CubeSats belonging to the e-st@r program. It is an educational project carried out by students and researchers of the “CubeSat Team Polito” in which StarSim has been mainly used for the payload development, an Active Attitude Determination and Control System, but StarSim’s capabilities have also been updated to evaluate functionalities, operations and performances of the entire satellite. AIL, SIL, CIL, HIL simulations have been performed along all the phases of the project, successfully verifying a great number of functional and operational requirements. In particular, attitude determination algorithms, control laws, modes of operation have been selected and verified; software has been developed step by step and the bugs-free executable files have been loaded on the micro-controller. All the interfaces and protocols as well as data and commands handling have been verified. Actuators, logic and electrical circuits have been designed, built and tested and sensors calibration has been performed. Problems such as real time and synchronization have been solved and a complete hardware in the loop simulation test campaign both for A-ADCS standalone and for the entire satellite has been performed, verifying the satisfaction of a great number of CubeSat functional and operational requirements. The case study represents the first validation of the methodology with the first release of StarSim. It has been proven that the methodology is effective in demonstrating that improving the design and verification activities is a key point to increase the confidence level in the success of a space mission
    corecore