1,886 research outputs found

    Mapping Tasks to Interactions for Graph Exploration and Graph Editing on Interactive Surfaces

    Full text link
    Graph exploration and editing are still mostly considered independently and systems to work with are not designed for todays interactive surfaces like smartphones, tablets or tabletops. When developing a system for those modern devices that supports both graph exploration and graph editing, it is necessary to 1) identify what basic tasks need to be supported, 2) what interactions can be used, and 3) how to map these tasks and interactions. This technical report provides a list of basic interaction tasks for graph exploration and editing as a result of an extensive system review. Moreover, different interaction modalities of interactive surfaces are reviewed according to their interaction vocabulary and further degrees of freedom that can be used to make interactions distinguishable are discussed. Beyond the scope of graph exploration and editing, we provide an approach for finding and evaluating a mapping from tasks to interactions, that is generally applicable. Thus, this work acts as a guideline for developing a system for graph exploration and editing that is specifically designed for interactive surfaces.Comment: 21 pages, minor corrections (typos etc.

    PickCells: A Physically Reconfigurable Cell-composed Touchscreen

    Get PDF
    Touchscreens are the predominant medium for interactions with digital services; however, their current fixed form factor narrows the scope for rich physical interactions by limiting interaction possibilities to a single, planar surface. In this paper we introduce the concept of PickCells, a fully reconfigurable device concept composed of cells, that breaks the mould of rigid screens and explores a modular system that affords rich sets of tangible interactions and novel acrossdevice relationships. Through a series of co-design activities – involving HCI experts and potential end-users of such systems – we synthesised a design space aimed at inspiring future research, giving researchers and designers a framework in which to explore modular screen interactions. The design space we propose unifies existing works on modular touch surfaces under a general framework and broadens horizons by opening up unexplored spaces providing new interaction possibilities. In this paper, we present the PickCells concept, a design space of modular touch surfaces, and propose a toolkit for quick scenario prototyping

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Levitating Particle Displays with Interactive Voxels

    Get PDF
    Levitating objects can be used as the primitives in a new type of display. We present levitating particle displays and show how research into object levitation is enabling a new way of presenting and interacting with information. We identify novel properties of levitating particle displays and give examples of the interaction techniques and applications they allow. We then discuss design challenges for these displays, potential solutions, and promising areas for future research

    Beyond representations: towards an action-centric perspective on tangible interaction

    Get PDF
    In the light of theoretical as well as concrete technical development, we discuss a conceptual shift from an information-centric to an action-centric perspective on tangible interactive technology. We explicitly emphasise the qualities of shareable use, and the importance of designing tangibles that allow for meaningful manipulation and control of the digital material. This involves a broadened focus from studying properties of the interface, to instead aim for qualities of the activity of using a system, a general tendency towards designing for social and sharable use settings and an increased openness towards multiple and subjective interpretations. An effect of this is that tangibles are not designed as representations of data, but as resources for action. We discuss four ways that tangible artefacts work as resources for action: (1) for physical manipulation; (2) for referential, social and contextually oriented action; (3) for perception and sensory experience; (4) for digitally mediated action

    The effect of representation location on interaction in a tangible learning environment

    Get PDF
    Drawing on the 'representation' TUI framework [21], this paper reports a study that investigated the concept of 'representation location' and its effect on interaction and learning. A reacTIVision-based tangible interface was designed and developed to support children learning about the behaviour of light. Children aged eleven years worked with the environment in groups of three. Findings suggest that different representation locations lend themselves to different levels of abstraction and engender different forms and levels of activity, particularly with respect to speed of dynamics and differences in group awareness. Furthermore, the studies illustrated interaction effects according to different physical correspondence metaphors used, particularly with respect to combining familiar physical objects with digital--based table-top representation. The implications of these findings for learning are discussed

    Multi-touch interaction principles for collaborative real-time music activities: towards a pattern language

    Get PDF
    In this paper we give an analysis of the literature on a set of problems that can arise when undertaking the interaction design of multi-touch applications for collaborative real-time music activities, which are designed for multitouch technologies (e.g. smartphones, tablets, interactive tabletops, among others). Each problem is described, and a candidate design pattern (CDP) is suggested in the form of a short sentence and a diagram—an approach inspired by Christopher Alexander’s A Pattern Language. These solutions relate to the fundamental collaborative principles of democratic relationships, identities and collective interplay. We believe that this approach might disseminate forms of best design practice for collaborative music applications, in order to produce real-time musical systems which are collaborative and expressive

    Bringing tabletop technologies to kindergarten children

    Get PDF
    Taking computer technology away from the desktop and into a more physical, manipulative space, is known that provide many benefits and is generally considered to result in a system that is easier to learn and more natural to use. This paper describes a design solution that allows kindergarten children to take the benefits of the new pedagogical possibilities that tangible interaction and tabletop technologies offer for manipulative learning. After analysis of children's cognitive and psychomotor skills, we have designed and tuned a prototype game that is suitable for children aged 3 to 4 years old. Our prototype uniquely combines low cost tangible interaction and tabletop technology with tutored learning. The design has been based on the observation of children using the technology, letting them freely play with the application during three play sessions. These observational sessions informed the design decisions for the game whilst also confirming the children's enjoyment of the prototype
    • 

    corecore