5,053 research outputs found

    Softness Haptic Display Device for Human- Computer Interaction

    Get PDF

    Controllable Shadow Generation Using Pixel Height Maps

    Full text link
    Shadows are essential for realistic image compositing. Physics-based shadow rendering methods require 3D geometries, which are not always available. Deep learning-based shadow synthesis methods learn a mapping from the light information to an object's shadow without explicitly modeling the shadow geometry. Still, they lack control and are prone to visual artifacts. We introduce pixel heigh, a novel geometry representation that encodes the correlations between objects, ground, and camera pose. The pixel height can be calculated from 3D geometries, manually annotated on 2D images, and can also be predicted from a single-view RGB image by a supervised approach. It can be used to calculate hard shadows in a 2D image based on the projective geometry, providing precise control of the shadows' direction and shape. Furthermore, we propose a data-driven soft shadow generator to apply softness to a hard shadow based on a softness input parameter. Qualitative and quantitative evaluations demonstrate that the proposed pixel height significantly improves the quality of the shadow generation while allowing for controllability.Comment: 15 pages, 11 figure

    Fit for purpose? Pattern cutting and seams in wearables development

    Get PDF
    This paper describes how a group of practitioners and researchers are working across disciplines at Nottingham Trent University in the area of Technical Textiles. It introduces strands of ongoing enquiry centred around the development and application of stretch sensors on the body, focusing on how textile and fashion knowledge are being reflexively revealed in the collaborative development of seamful wearable concepts, and on the tensions between design philosophies as revealed by definitions of purpose. We discuss the current research direction of the Aeolia project, which seeks to exploit the literal gaps found in pattern cutting for fitted stretch garments towards experiential forms and potential interactions. Normative goals of fitness for purpose and seamlessness are interrogated and the potential for more integrated design processes, which may at first appear ‘upside down’, is discussed

    Creating gameplay mechanics with deformable characters

    Get PDF
    This paper presents how soft body simulation can create deformable characters and physics-based game mechanics that result in a more varied gameplay experience. A framework was implemented that allows the creation of a fully deformable soft body character within a games application where the simulation model properties could be altered at runtime to create gameplay mechanics based on varying the deformation of the character. The simulation model was augmented to allow appropriate methods of player control that complemented the character design and its ability to deform. It was found that while the implementation of deformation-based mechanics created a more varied gameplay experience, the underlying simulation model allowed for a limited amount of deformation before becoming unstable. The ffectiveness of the framework is demonstrated by the resulting mechanics that are not possible through the use of previous methods

    Haptic Experience and the Design of Drawing Interfaces

    Get PDF
    Haptic feedback has the potential to enhance users’ sense of being engaged and creative in their artwork. Current work on providing haptic feedback in computer-based drawing applications has focused mainly on the realism of the haptic sensation rather than the users’ experience of that sensation in the context of their creative work. We present a study that focuses on user experience of three haptic drawing interfaces. These interfaces were based on two different haptic metaphors, one of which mimicked familiar drawing tools (such as pen, pencil or crayon on smooth or rough paper) and the other of which drew on abstract descriptors of haptic experience (roughness, stickiness, scratchiness and smoothness). It was found that users valued having control over the haptic sensation; that each metaphor was preferred by approximately half of the participants; and that the real world metaphor interface was considered more helpful than the abstract one, whereas the abstract interface was considered to better support creativity. This suggests that future interfaces for artistic work should have user-modifiable interaction styles for controlling the haptic sensation

    To hear or not to hear: Sound Availability Modulates Sensory-Motor Integration

    Get PDF
    When we walk in place with our eyes closed after a few minutes of walking on a treadmill, we experience an unintentional forward body displacement (drift), called the sensory-motor aftereffect. Initially, this effect was thought to be due to the mismatch experienced during treadmill walking between the visual (absence of optic flow signaling body steadiness) and proprioceptive (muscle spindles firing signaling body displacement) information. Recently, the persistence of this effect has been shown even in the absence of vision, suggesting that other information, such as the sound of steps, could play a role. To test this hypothesis, six cochlear-implanted individuals were recruited and their forward drift was measured before (Control phase) and after (Post Exercise phase) walking on a treadmill while having their cochlear system turned on and turned off. The relevance in testing cochlear-implanted individuals was that when their system is turned off, they perceive total silence, even eliminating the sounds normally obtained from bone conduction. Results showed the absence of the aftereffect when the system was turned off, underlining the fundamental role played by sounds in the control of action and breaking new ground in the use of interactive sound feedback in motor learning and motor development
    • …
    corecore