5,612 research outputs found

    Effects of virtual acoustics on dynamic auditory distance perception

    Get PDF
    Sound propagation encompasses various acoustic phenomena including reverberation. Current virtual acoustic methods, ranging from parametric filters to physically-accurate solvers, can simulate reverberation with varying degrees of fidelity. We investigate the effects of reverberant sounds generated using different propagation algorithms on acoustic distance perception, i.e., how faraway humans perceive a sound source. In particular, we evaluate two classes of methods for real-time sound propagation in dynamic scenes based on parametric filters and ray tracing. Our study shows that the more accurate method shows less distance compression as compared to the approximate, filter-based method. This suggests that accurate reverberation in VR results in a better reproduction of acoustic distances. We also quantify the levels of distance compression introduced by different propagation methods in a virtual environment.Comment: 8 Pages, 7 figure

    Reflection-Aware Sound Source Localization

    Full text link
    We present a novel, reflection-aware method for 3D sound localization in indoor environments. Unlike prior approaches, which are mainly based on continuous sound signals from a stationary source, our formulation is designed to localize the position instantaneously from signals within a single frame. We consider direct sound and indirect sound signals that reach the microphones after reflecting off surfaces such as ceilings or walls. We then generate and trace direct and reflected acoustic paths using inverse acoustic ray tracing and utilize these paths with Monte Carlo localization to estimate a 3D sound source position. We have implemented our method on a robot with a cube-shaped microphone array and tested it against different settings with continuous and intermittent sound signals with a stationary or a mobile source. Across different settings, our approach can localize the sound with an average distance error of 0.8m tested in a room of 7m by 7m area with 3m height, including a mobile and non-line-of-sight sound source. We also reveal that the modeling of indirect rays increases the localization accuracy by 40% compared to only using direct acoustic rays.Comment: Submitted to ICRA 2018. The working video is available at (https://youtu.be/TkQ36lMEC-M

    Perceptually Driven Interactive Sound Propagation for Virtual Environments

    Get PDF
    Sound simulation and rendering can significantly augment a user‘s sense of presence in virtual environments. Many techniques for sound propagation have been proposed that predict the behavior of sound as it interacts with the environment and is received by the user. At a broad level, the propagation algorithms can be classified into reverberation filters, geometric methods, and wave-based methods. In practice, heuristic methods based on reverberation filters are simple to implement and have a low computational overhead, while wave-based algorithms are limited to static scenes and involve extensive precomputation. However, relatively little work has been done on the psychoacoustic characterization of different propagation algorithms, and evaluating the relationship between scientific accuracy and perceptual benefits.In this dissertation, we present perceptual evaluations of sound propagation methods and their ability to model complex acoustic effects for virtual environments. Our results indicate that scientifically accurate methods for reverberation and diffraction do result in increased perceptual differentiation. Based on these evaluations, we present two novel hybrid sound propagation methods that combine the accuracy of wave-based methods with the speed of geometric methods for interactive sound propagation in dynamic scenes.Our first algorithm couples modal sound synthesis with geometric sound propagation using wave-based sound radiation to perform mode-aware sound propagation. We introduce diffraction kernels of rigid objects,which encapsulate the sound diffraction behaviors of individual objects in the free space and are then used to simulate plausible diffraction effects using an interactive path tracing algorithm. Finally, we present a novel perceptual driven metric that can be used to accelerate the computation of late reverberation to enable plausible simulation of reverberation with a low runtime overhead. We highlight the benefits of our novel propagation algorithms in different scenarios.Doctor of Philosoph

    Spatial Sound Rendering – A Survey

    Get PDF
    Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works
    • …
    corecore