278 research outputs found

    Computer-aided Analysis and Interpretation of HRCT Images of the Lung

    Get PDF

    Unsupervised CT lung image segmentation of a mycobacterium tuberculosis infection model

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis that produces pulmonary damage. Radiological imaging is the preferred technique for the assessment of TB longitudinal course. Computer-assisted identification of biomarkers eases the work of the radiologist by providing a quantitative assessment of disease. Lung segmentation is the step before biomarker extraction. In this study, we present an automatic procedure that enables robust segmentation of damaged lungs that have lesions attached to the parenchyma and are affected by respiratory movement artifacts in a Mycobacterium Tuberculosis infection model. Its main steps are the extraction of the healthy lung tissue and the airway tree followed by elimination of the fuzzy boundaries. Its performance was compared with respect to a segmentation obtained using: (1) a semi-automatic tool and (2) an approach based on fuzzy connectedness. A consensus segmentation resulting from the majority voting of three experts' annotations was considered our ground truth. The proposed approach improves the overlap indicators (Dice similarity coefficient, 94% ± 4%) and the surface similarity coefficients (Hausdorff distance, 8.64 mm ± 7.36 mm) in the majority of the most difficult-to-segment slices. Results indicate that the refined lung segmentations generated could facilitate the extraction of meaningful quantitative data on disease burden.The research leading to these results received funding from the Innovative Medicines Initiative (www.imi.europa.eu) Joint Undertaking under grant agreement no. 115337, whose resources comprise funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution. This work was partially funded by projects TEC2013-48552-C2-1-R, RTC-2015-3772-1, TEC2015-73064-EXP and TEC2016-78052-R from the Spanish Ministerio de Economía, Industria y Competitividad, TOPUS S2013/MIT-3024 project from the regional government of Madrid and by the Department of Health, UK

    Deep Learning of Unified Region, Edge, and Contour Models for Automated Image Segmentation

    Full text link
    Image segmentation is a fundamental and challenging problem in computer vision with applications spanning multiple areas, such as medical imaging, remote sensing, and autonomous vehicles. Recently, convolutional neural networks (CNNs) have gained traction in the design of automated segmentation pipelines. Although CNN-based models are adept at learning abstract features from raw image data, their performance is dependent on the availability and size of suitable training datasets. Additionally, these models are often unable to capture the details of object boundaries and generalize poorly to unseen classes. In this thesis, we devise novel methodologies that address these issues and establish robust representation learning frameworks for fully-automatic semantic segmentation in medical imaging and mainstream computer vision. In particular, our contributions include (1) state-of-the-art 2D and 3D image segmentation networks for computer vision and medical image analysis, (2) an end-to-end trainable image segmentation framework that unifies CNNs and active contour models with learnable parameters for fast and robust object delineation, (3) a novel approach for disentangling edge and texture processing in segmentation networks, and (4) a novel few-shot learning model in both supervised settings and semi-supervised settings where synergies between latent and image spaces are leveraged to learn to segment images given limited training data.Comment: PhD dissertation, UCLA, 202

    Development and validation of HRCT airway segmentation algorithms

    Get PDF
    Direct measurements of airway lumen and wall areas are potentially useful as a diagnostic tool and as an aid to understanding the pathophysiology underlying lung disease. Direct measurements can be made from images created by high resolution computer tomography (HRCT) by using computer-based algorithms to segment airways, but current validation techniques cannot adequately establish the accuracy and precision of these algorithms. A detailed review of HRCT airway segmentation algorithms was undertaken, from which three candidate algorithm designs were developed. A custom Windows-based software program was implemented to facilitate multi-modality development and validation of the segmentation algorithms. The performance of the algorithms was examined in clinical HRCT images. A centre-likelihood (CL) ray-casting algorithm was found to be the most suitable algorithm due to its speed and reliability in semi-automatic segmentation and tracking of the airway wall. Several novel refinements were demonstrated to improve the CL algorithm’s robustness in HRCT lung data. The performance of the CL algorithm was then quantified in two-dimensional simulated data to optimise customisable parameters such as edge-detection method, interpolation and number of rays. Novel correction equations to counter the effects of volume averaging and airway orientation angle were derived and demonstrated in three-dimensional simulated data. The optimal CL algorithm was validated with HRCT data using a plastic phantom and a pig lung phantom matched to micro-CT. Accuracy was found to be improved compared to previous studies using similar methods. The volume averaging correction was found to improve precision and accuracy in the plastic phantom but not in the pig lung phantom. When tested in a clinical setting the results of the optimised CL algorithm was in agreement with the results of other measures of lung function. The thesis concludes that the relative contributions of confounders of airway measurement have been quantified in simulated data and the CL algorithm’s performance has been validated in a plastic phantom as well as animal model. This validation protocol has improved the accuracy and precision of measurements made using the CL algorith
    • …
    corecore