97 research outputs found

    BRDF representation and acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    BRDF Representation and Acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    An Overview of BRDF Models

    Get PDF
    This paper is focused on the Bidirectional Reflectance Distribution Function (BRDF) in the context of algorithms for computational production of realistic synthetic images. We provide a review of most relevant analytical BRDF models proposed in the literature which have been used for realistic rendering. We also show different approaches used for obtaining efficient models from acquired reflectance data, and the related function fitting techniques, suitable for using that data in efficient rendering algorithms. We consider algorithms for computation of BRDF integrals, by using Monte-Carlo based numerical integration. In this context, we review known techniques to design efficient BRDF sampling schemes for both analytical and measured BRDF models.The authors have been partially supported by the Spanish Research Program under project TIN2004-07672-C03-02 and the Andalusian Research Program under project P08-TIC-03717

    View-dependent precomputed light transport using non-linear Gaussian function approximations

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.Includes bibliographical references (p. 43-46).We propose a real-time method for rendering rigid objects with complex view-dependent effects under distant all-frequency lighting. Existing precomputed light transport approaches can render rich global illumination effects, but high-frequency view-dependent effects such as sharp highlights remain a challenge. We introduce a new representation of the light transport operator based on sums of Gaussians. The non-linear parameters of the representation allow for 1) arbitrary bandwidth because scale is encoded as a direct parameter; and 2) high-quality interpolation across view and mesh triangles because we interpolate the average direction of the incoming light, thereby preventing linear cross-fading artifacts. However, fitting the precomputed light transport data to this new representation requires solving a non-linear regression problem that is more involved than traditional linear and non-linear (truncation) approximation techniques. We present a new data fitting method based on optimization that includes energy terms aimed at enforcing good interpolation. We demonstrate that our method achieves high visual quality for a small storage cost and fast rendering time.by Paul Elijah Green.S.M

    Image based surface reflectance remapping for consistent and tool independent material appearence

    Get PDF
    Physically-based rendering in Computer Graphics requires the knowledge of material properties other than 3D shapes, textures and colors, in order to solve the rendering equation. A number of material models have been developed, since no model is currently able to reproduce the full range of available materials. Although only few material models have been widely adopted in current rendering systems, the lack of standardisation causes several issues in the 3D modelling workflow, leading to a heavy tool dependency of material appearance. In industry, final decisions about products are often based on a virtual prototype, a crucial step for the production pipeline, usually developed by a collaborations among several departments, which exchange data. Unfortunately, exchanged data often tends to differ from the original, when imported into a different application. As a result, delivering consistent visual results requires time, labour and computational cost. This thesis begins with an examination of the current state of the art in material appearance representation and capture, in order to identify a suitable strategy to tackle material appearance consistency. Automatic solutions to this problem are suggested in this work, accounting for the constraints of real-world scenarios, where the only available information is a reference rendering and the renderer used to obtain it, with no access to the implementation of the shaders. In particular, two image-based frameworks are proposed, working under these constraints. The first one, validated by means of perceptual studies, is aimed to the remapping of BRDF parameters and useful when the parameters used for the reference rendering are available. The second one provides consistent material appearance across different renderers, even when the parameters used for the reference are unknown. It allows the selection of an arbitrary reference rendering tool, and manipulates the output of other renderers in order to be consistent with the reference
    corecore