10,403 research outputs found

    A method for interactive manipulation and animation of volumetric data

    Get PDF
    We outline an efficient method for visualizing and manipulating volumetric data, in particular, cardiac MRIdata sets. The approach is designed to allow interactive manipulation and real-time animation of volumetric data sets. The underlying model provides an efficient graphical representation for interactive rendering while not eliminating data from the volume of interest. We believe this model to be a valuable medical imaging tool that is applicable to other volume rendering problems.Directed by James McClella

    A directional occlusion shading model for interactive direct volume rendering

    Get PDF
    Volumetric rendering is widely used to examine 3D scalar fields from CT/MRI scanners and numerical simulation datasets. One key aspect of volumetric rendering is the ability to provide perceptual cues to aid in understanding structure contained in the data. While shading models that reproduce natural lighting conditions have been shown to better convey depth information and spatial relationships, they traditionally require considerable (pre)computation. In this paper, a shading model for interactive direct volume rendering is proposed that provides perceptual cues similar to those of ambient occlusion, for both solid and transparent surface-like features. An image space occlusion factor is derived from the radiative transport equation based on a specialized phase function. The method does not rely on any precomputation and thus allows for interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions while modifications to the volume via clipping planes are incorporated into the resulting occlusion-based shading

    Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    Get PDF
    The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection. Currently the implementation for the second use case is in its final phase. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR’s Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application  instances, allowing for collaborative sessions between distant experts

    Gigavoxels: ray-guided streaming for efficient and detailed voxel rendering

    Get PDF
    Figure 1: Images show volume data that consist of billions of voxels rendered with our dynamic sparse octree approach. Our algorithm achieves real-time to interactive rates on volumes exceeding the GPU memory capacities by far, tanks to an efficient streaming based on a ray-casting solution. Basically, the volume is only used at the resolution that is needed to produce the final image. Besides the gain in memory and speed, our rendering is inherently anti-aliased. We propose a new approach to efficiently render large volumetric data sets. The system achieves interactive to real-time rendering performance for several billion voxels. Our solution is based on an adaptive data representation depending on the current view and occlusion information, coupled to an efficient ray-casting rendering algorithm. One key element of our method is to guide data production and streaming directly based on information extracted during rendering. Our data structure exploits the fact that in CG scenes, details are often concentrated on the interface between free space and clusters of density and shows that volumetric models might become a valuable alternative as a rendering primitive for real-time applications. In this spirit, we allow a quality/performance trade-off and exploit temporal coherence. We also introduce a mipmapping-like process that allows for an increased display rate and better quality through high quality filtering. To further enrich the data set, we create additional details through a variety of procedural methods. We demonstrate our approach in several scenarios, like the exploration of a 3D scan (8192 3 resolution), of hypertextured meshes (16384 3 virtual resolution), or of a fractal (theoretically infinite resolution). All examples are rendered on current generation hardware at 20-90 fps and respect the limited GPU memory budget. This is the author’s version of the paper. The ultimate version has been published in the I3D 2009 conference proceedings.

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Cross-Platform Presentation of Interactive Volumetric Imagery

    Get PDF
    Volume data is useful across many disciplines, not just medicine. Thus, it is very important that researchers have a simple and lightweight method of sharing and reproducing such volumetric data. In this paper, we explore some of the challenges associated with volume rendering, both from a classical sense and from the context of Web3D technologies. We describe and evaluate the pro- posed X3D Volume Rendering Component and its associated styles for their suitability in the visualization of several types of image data. Additionally, we examine the ability for a minimal X3D node set to capture provenance and semantic information from outside ontologies in metadata and integrate it with the scene graph

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Drishti, a volume exploration and presentation tool

    Get PDF
    Among several rendering techniques for volumetric data, direct volume rendering is a powerful visualization tool for a wide variety of applications. This paper describes the major features of hardware based volume exploration and presentation tool - Drishti. The word, Drishti, stands for vision or insight in Sanskrit, an ancient Indian language. Drishti is a cross-platform open-source volume rendering system that delivers high quality, state of the art renderings. The features in Drishti include, though not limited to, production quality rendering, volume sculpting, multi-resolution zooming, transfer function blending, profile generation, measurement tools, mesh generation, stereo/anaglyph/crosseye renderings. Ultimately, Drishti provides an intuitive and powerful interface for choreographing animations
    • …
    corecore