103 research outputs found

    Path-tracing Monte Carlo Library for 3D Radiative Transfer in Highly Resolved Cloudy Atmospheres

    Full text link
    Interactions between clouds and radiation are at the root of many difficulties in numerically predicting future weather and climate and in retrieving the state of the atmosphere from remote sensing observations. The large range of issues related to these interactions, and in particular to three-dimensional interactions, motivated the development of accurate radiative tools able to compute all types of radiative metrics, from monochromatic, local and directional observables, to integrated energetic quantities. In the continuity of this community effort, we propose here an open-source library for general use in Monte Carlo algorithms. This library is devoted to the acceleration of path-tracing in complex data, typically high-resolution large-domain grounds and clouds. The main algorithmic advances embedded in the library are those related to the construction and traversal of hierarchical grids accelerating the tracing of paths through heterogeneous fields in null-collision (maximum cross-section) algorithms. We show that with these hierarchical grids, the computing time is only weakly sensitivive to the refinement of the volumetric data. The library is tested with a rendering algorithm that produces synthetic images of cloud radiances. Two other examples are given as illustrations, that are respectively used to analyse the transmission of solar radiation under a cloud together with its sensitivity to an optical parameter, and to assess a parametrization of 3D radiative effects of clouds.Comment: Submitted to JAMES, revised and submitted again (this is v2

    Efficient Many-Light Rendering of Scenes with Participating Media

    Get PDF
    We present several approaches based on virtual lights that aim at capturing the light transport without compromising quality, and while preserving the elegance and efficiency of many-light rendering. By reformulating the integration scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive, high-quality lighting on surfaces, and one for handling scenes with participating media

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Interactive Rendering of Scattering and Refraction Effects in Heterogeneous Media

    Get PDF
    In this dissertation we investigate the problem of interactive and real-time visualization of single scattering, multiple scattering and refraction effects in heterogeneous volumes. Our proposed solutions span a variety of use scenarios: from a very fast yet physically-based approximation to a physically accurate simulation of microscopic light transmission. We add to the state of the art by introducing a novel precomputation and sampling strategy, a system for efficiently parallelizing the computation of different volumetric effects, and a new and fast version of the Discrete Ordinates Method. Finally, we also present a collateral work on real-time 3D acquisition devices

    A Local Frequency Analysis of Light Scattering and Absorption

    Get PDF
    (presented at SIGGRAPH 2014)International audienceRendering participating media requires significant computation, but the effect of volumetric scattering is often eventually smooth. This article proposes an innovative analysis of absorption and scattering of local light fields in the Fourier domain and derives the corresponding set of operators on the covariance matrix of the power spectrum of the light field. This analysis brings an efficient prediction tool for the behavior of light along a light path in participating media. We leverage this analysis to derive proper frequency prediction metrics in 3D by combining per-light path information in the volume.We demonstrate the use of these metrics to significantly improve the convergence of a variety of existing methods for the simulation of multiple scattering in participating media. First, we propose an efficient computation of second derivatives of the fluence, to be used in methods like irradiance caching. Second, we derive proper filters and adaptive sample densities for image-space adaptive sampling and reconstruction. Third, we propose an adaptive sampling for the integration of scattered illumination to the camera. Finally, we improve the convergence of progressive photon beams by predicting where the radius of light gathering can stop decreasing. Light paths in participating media can be very complex. Our key contribution is to show that analyzing local light fields in the Fourier domain reveals the consistency of illumination in such media and provides a set of simple and useful rules to be used to accelerate existing global illumination methods.Une nouvelle analyse locale de la diffusion et de l'absorption de la lumière dans l'espace de Fourier est combinée avec le tracé de covariance et permet une estimation rapide du contenu fréquentiel local; cette approche permet l'amélioration de nombreux algorithmes de rendu de milieux participants tels que Progressive Photon Beams et l'integration d'effets de diffusion simple et l'échantillonnage et la reconstruction d'effets de simple diffusion simple en espace image

    Modeling and real-time rendering of participating media using the GPU

    Get PDF
    Cette thèse traite de la modélisation, l'illumination et le rendu temps-réel de milieux participants à l'aide du GPU. Dans une première partie, nous commençons par développer une méthode de rendu de nappes de brouillard hétérogènes pour des scènes en extérieur. Le brouillard est modélisé horizontalement dans une base 2D de fonctions de Haar ou de fonctions B-Spline linéaires ou quadratiques, dont les coefficients peuvent être chargés depuis une textit{fogmap}, soit une carte de densité en niveaux de gris. Afin de donner au brouillard son épaisseur verticale, celui-ci est doté d'un coefficient d'atténuation en fonction de l'altitude, utilisé pour paramétrer la rapidité avec laquelle la densité diminue avec la distance au milieu selon l'axe Y. Afin de préparer le rendu temps-réel, nous appliquons une transformée en ondelettes sur la carte de densité du brouillard, afin d'en extraire une approximation grossière (base de fonctions B-Spline) et une série de couches de détails (bases d'ondelettes B-Spline), classés par fréquence.%Les détails sont ainsi classés selon leur fréquence et, additionnées, permettent de retrouver la carte de densité d'origine. Chacune de ces bases de fonctions 2D s'apparente à une grille de coefficients. Lors du rendu sur GPU, chacune de ces grilles est traversée pas à pas, case par case, depuis l'observateur jusqu'à la plus proche surface solide. Grâce à notre séparation des différentes fréquences de détails lors des pré-calculs, nous pouvons optimiser le rendu en ne visualisant que les détails les plus contributifs visuellement en avortant notre parcours de grille à une distance variable selon la fréquence. Nous présentons ensuite d'autres travaux concernant ce même type de brouillard : l'utilisation de la transformée en ondelettes pour représenter sa densité via une grille non-uniforme, la génération automatique de cartes de densité et son animation à base de fractales, et enfin un début d'illumination temps-réel du brouillard en simple diffusion. Dans une seconde partie, nous nous intéressons à la modélisation, l'illumination en simple diffusion et au rendu temps-réel de fumée (sans simulation physique) sur GPU. Notre méthode s'inspire des Light Propagation Volumes (volume de propagation de lumière), une technique à l'origine uniquement destinée à la propagation de la lumière indirecte de manière complètement diffuse, après un premier rebond sur la géométrie. Nous l'adaptons pour l'éclairage direct, et l'illumination des surfaces et milieux participants en simple diffusion. Le milieu est fourni sous forme d'un ensemble de bases radiales (blobs), puis est transformé en un ensemble de voxels, ainsi que les surfaces solides, de manière à disposer d'une représentation commune. Par analogie aux LPV, nous introduisons un Occlusion Propagation Volume, dont nous nous servons, pour calculer l'intégrale de la densité optique entre chaque source et chaque autre cellule contenant soit un voxel du milieu, soit un voxel issu d'une surface. Cette étape est intégrée à la boucle de rendu, ce qui permet d'animer le milieu participant ainsi que les sources de lumière sans contrainte particulière. Nous simulons tous types d'ombres : dues au milieu ou aux surfaces, projetées sur le milieu ou les surfacesThis thesis deals with modeling, illuminating and rendering participating media in real-time using graphics hardware. In a first part, we begin by developing a method to render heterogeneous layers of fog for outdoor scenes. The medium is modeled horizontally using a 2D Haar or linear/quadratic B-Spline function basis, whose coefficients can be loaded from a fogmap, i.e. a grayscale density image. In order to give to the fog its vertical thickness, it is provided with a coefficient parameterizing the extinction of the density when the altitude to the fog increases. To prepare the rendering step, we apply a wavelet transform on the fog's density map, and extract a coarse approximation and a series of layers of details (B-Spline wavelet bases).These details are ordered according to their frequency and, when summed back together, can reconstitute the original density map. Each of these 2D function basis can be viewed as a grid of coefficients. At the rendering step on the GPU, each of these grids is traversed step by step, cell by cell, since the viewer's position to the nearest solid surface. Thanks to our separation of the different frequencies of details at the precomputations step, we can optimize the rendering by only visualizing details that contribute most to the final image and abort our grid traversal at a distance depending on the grid's frequency. We then present other works dealing with the same type of fog: the use of the wavelet transform to represent the fog's density in a non-uniform grid, the automatic generation of density maps and their animation based on Julia fractals, and finally a beginning of single-scattering illumination of the fog, where we are able to simulate shadows by the medium and the geometry. In a second time, we deal with modeling, illuminating and rendering full 3D single-scattering sampled media such as smoke (without physical simulation) on the GPU. Our method is inspired by light propagation volumes, a technique whose only purpose was, at the beginning, to propagate fully diffuse indirect lighting. We adapt it to direct lighting, and the illumination of both surfaces and participating media. The medium is provided under the form of a set of radial bases (blobs), and is then transformed into a set of voxels, together with solid surfaces, so that both entities can be manipulated more easily under a common form. By analogy to the LPV, we introduce an occlusion propagation volume, which we use to compute the integral of the optical density, between each source and each other cell containing a voxel either generated from the medium, or from a surface. This step is integrated into the rendering process, which allows to animate participating media and light sources without any further constraintPARIS-EST-Université (770839901) / SudocSudocFranceF

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    Programmable Image-Based Light Capture for Previsualization

    Get PDF
    Previsualization is a class of techniques for creating approximate previews of a movie sequence in order to visualize a scene prior to shooting it on the set. Often these techniques are used to convey the artistic direction of the story in terms of cinematic elements, such as camera movement, angle, lighting, dialogue, and character motion. Essentially, a movie director uses previsualization (previs) to convey movie visuals as he sees them in his minds-eye . Traditional methods for previs include hand-drawn sketches, Storyboards, scaled models, and photographs, which are created by artists to convey how a scene or character might look or move. A recent trend has been to use 3D graphics applications such as video game engines to perform previs, which is called 3D previs. This type of previs is generally used prior to shooting a scene in order to choreograph camera or character movements. To visualize a scene while being recorded on-set, directors and cinematographers use a technique called On-set previs, which provides a real-time view with little to no processing. Other types of previs, such as Technical previs, emphasize accurately capturing scene properties but lack any interactive manipulation and are usually employed by visual effects crews and not for cinematographers or directors. This dissertation\u27s focus is on creating a new method for interactive visualization that will automatically capture the on-set lighting and provide interactive manipulation of cinematic elements to facilitate the movie maker\u27s artistic expression, validate cinematic choices, and provide guidance to production crews. Our method will overcome the drawbacks of the all previous previs methods by combining photorealistic rendering with accurately captured scene details, which is interactively displayed on a mobile capture and rendering platform. This dissertation describes a new hardware and software previs framework that enables interactive visualization of on-set post-production elements. A three-tiered framework, which is the main contribution of this dissertation is; 1) a novel programmable camera architecture that provides programmability to low-level features and a visual programming interface, 2) new algorithms that analyzes and decomposes the scene photometrically, and 3) a previs interface that leverages the previous to perform interactive rendering and manipulation of the photometric and computer generated elements. For this dissertation we implemented a programmable camera with a novel visual programming interface. We developed the photometric theory and implementation of our novel relighting technique called Symmetric lighting, which can be used to relight a scene with multiple illuminants with respect to color, intensity and location on our programmable camera. We analyzed the performance of Symmetric lighting on synthetic and real scenes to evaluate the benefits and limitations with respect to the reflectance composition of the scene and the number and color of lights within the scene. We found that, since our method is based on a Lambertian reflectance assumption, our method works well under this assumption but that scenes with high amounts of specular reflections can have higher errors in terms of relighting accuracy and additional steps are required to mitigate this limitation. Also, scenes which contain lights whose colors are a too similar can lead to degenerate cases in terms of relighting. Despite these limitations, an important contribution of our work is that Symmetric lighting can also be leveraged as a solution for performing multi-illuminant white balancing and light color estimation within a scene with multiple illuminants without limits on the color range or number of lights. We compared our method to other white balance methods and show that our method is superior when at least one of the light colors is known a priori

    Utilising path-vertex data to improve Monte Carlo global illumination.

    Get PDF
    Efficient techniques for photo-realistic rendering are in high demand across a wide array of industries. Notable applications include visual effects for film, entertainment and virtual reality. Less direct applications such as visualisation for architecture, lighting design and product development also rely on the synthesis of realistic and physically based illumination. Such applications assert ever increasing demands on light transport algorithms, requiring the computation of photo-realistic effects while handling complex geometry, light scattering models and illumination. Techniques based on Monte Carlo integration handle such scenarios elegantly and robustly, but despite seeing decades of focused research and wide commercial support, these methods and their derivatives still exhibit undesirable side effects that are yet to be resolved. In this thesis, Monte Carlo path tracing techniques are improved upon by utilizing path vertex data and intermediate radiance contributions readily available during rendering. This permits the development of novel progressive algorithms that render low noise global illumination while striving to maintain the desirable accuracy and convergence properties of unbiased methods. The thesis starts by presenting a discussion into optical phenomenon, physically based rendering and achieving photo realistic image synthesis. This is followed by in-depth discussion of the published theoretical and practical research in this field, with a focus on stochastic methods and modem rendering methodologies. This provides insight into the issues surrounding Monte Carlo integration both in the general and rendering specific contexts, along with an appreciation for the complexities of solving global light transport. Alternative methods that aim to address these issues are discussed, providing an insight into modem rendering paradigms and their characteristics. Thus, an understanding of the key aspects is obtained, that is necessary to build up and discuss the novel research and contributions to the field developed throughout this thesis. First, a path space filtering strategy is proposed that allows the path-based space of light transport to be classified into distinct subsets. This permits the novel combination of robust path tracing and recent progressive photon mapping algorithms to handle each subset based on the characteristics of the light transport in that space. This produces a hybrid progressive rendering technique that utilises the strengths of existing state of the art Monte Carlo and photon mapping methods to provide efficient and consistent rendering of complex scenes with vanishing bias. The second original contribution is a probabilistic image-based filtering and sample clustering framework that provides high quality previews of global illumination whilst remaining aware of high frequency detail and features in geometry, materials and the incident illumination. As will be seen, the challenges of edge-aware noise reduction are numerous and long standing, particularly when identifying high frequency features in noisy illumination signals. Discontinuities such as hard shadows and glossy reflections are commonly overlooked by progressive filtering techniques, however by dividing path space into multiple layers, once again based on utilising path vertex data, the overlapping illumination of varying intensities, colours and frequencies is more effectively handled. Thus noise is removed from each layer independent of features present in the remaining path space, effectively preserving such features
    • …
    corecore