475 research outputs found

    Interactive Multidimensional Modeling of Linked Data for Exploratory OLAP

    Get PDF
    Exploratory OLAP aims at coupling the precision and detail of corporate data with the information wealth of LOD. While some techniques to create, publish, and query RDF cubes are already available, little has been said about how to contextualize these cubes with situational data in an on-demand fashion. In this paper we describe an approach, called iMOLD, that enables non-technical users to enrich an RDF cube with multidimensional knowledge by discovering aggregation hierarchies in LOD. This is done through a user-guided process that recognizes in the LOD the recurring modeling patterns that express roll- up relationships between RDF concepts, then translates these patterns into aggregation hierarchies to enrich the RDF cube. Two families of aggregation patterns are identified, based on associations and generalization respectively, and the algorithms for recognizing them are described. To evaluate iMOLD in terms of efficiency and effectiveness we compare it with a related approach in the literature, we propose a case study based on DBpedia, and we discuss the results of a test made with real users

    Interactive multidimensional modeling of linked data for exploratory OLAP

    Get PDF
    Exploratory OLAP aims at coupling the precision and detail of corporate data with the information wealth of LOD. While some techniques to create, publish, and query RDF cubes are already available, little has been said about how to contextualize these cubes with situational data in an on-demand fashion. In this paper we describe an approach, called iMOLD, that enables non-technical users to enrich an RDF cube with multidimensional knowledge by discovering aggregation hierarchies in LOD. This is done through a user-guided process that recognizes in the LOD the recurring modeling patterns that express roll-up relationships between RDF concepts, then translates these patterns into aggregation hierarchies to enrich the RDF cube. Two families of aggregation patterns are identified, based on associations and generalization respectively, and the algorithms for recognizing them are described. To evaluate iMOLD in terms of efficiency and effectiveness we compare it with a related approach in the literature, we propose a case study based on DBpedia, and we discuss the results of a test made with real users.Peer ReviewedPostprint (author's final draft

    Graph BI & analytics: current state and future challenges

    Get PDF
    In an increasingly competitive market, making well-informed decisions requires the analysis of a wide range of heterogeneous, large and complex data. This paper focuses on the emerging field of graph warehousing. Graphs are widespread structures that yield a great expressive power. They are used for modeling highly complex and interconnected domains, and efficiently solving emerging big data application. This paper presents the current status and open challenges of graph BI and analytics, and motivates the need for new warehousing frameworks aware of the topological nature of graphs. We survey the topics of graph modeling, management, processing and analysis in graph warehouses. Then we conclude by discussing future research directions and positioning them within a unified architecture of a graph BI and analytics framework.Peer ReviewedPostprint (author's final draft

    Dimensional enrichment of statistical linked open data

    Get PDF
    On-Line Analytical Processing (OLAP) is a data analysis technique typically used for local and well-prepared data. However, initiatives like Open Data and Open Government bring new and publicly available data on the web that are to be analyzed in the same way. The use of semantic web technologies for this context is especially encouraged by the Linked Data initiative. There is already a considerable amount of statistical linked open data sets published using the RDF Data Cube Vocabulary (QB) which is designed for these purposes. However, QB lacks some essential schema constructs (e.g., dimension levels) to support OLAP. Thus, the QB4OLAP vocabulary has been proposed to extend QB with the necessary constructs and be fully compliant with OLAP. In this paper, we focus on the enrichment of an existing QB data set with QB4OLAP semantics. We first thoroughly compare the two vocabularies and outline the benefits of QB4OLAP. Then, we propose a series of steps to automate the enrichment of QB data sets with specific QB4OLAP semantics; being the most important, the definition of aggregate functions and the detection of new concepts in the dimension hierarchy construction. The proposed steps are defined to form a semi-automatic enrichment method, which is implemented in a tool that enables the enrichment in an interactive and iterative fashion. The user can enrich the QB data set with QB4OLAP concepts (e.g., full-fledged dimension hierarchies) by choosing among the candidate concepts automatically discovered with the steps proposed. Finally, we conduct experiments with 25 users and use three real-world QB data sets to evaluate our approach. The evaluation demonstrates the feasibility of our approach and shows that, in practice, our tool facilitates, speeds up, and guarantees the correct results of the enrichment process.Peer ReviewedPostprint (author's final draft

    A Decision Technology System To Advance the Diagnosis and Treatment of Breast Cancer

    Get PDF
    Geographical variations in cancer rates have been observed for decades. Described spatial patterns and trends have provided clues for generating hypotheses about the etiology of cancer. For breast cancer, investigators have demonstrated that some variation can be explained by differences in the population distribution of known breast cancer risk factors such as menstrual and reproductive variables (Laden, Spiegelman, and Neas, 1997; Robbins, Bescianini, and Kelsey, 1997; Sturgeon, Schairer, and Gail, 1995). However, regional patterns also may reflect the effects of Workshop on Hormones, Hormone Metabolism, Environment, and Breast Cancer (1995): (a) environmental hazards (such as air and water pollution), (b) demographics and the lifestyle of a mobile population, (c) subgroup susceptibility, (d) changes and advances in medical practice and healthcare management, and (e) other factors. To accurately measure breast cancer risk in individuals and population groups, it is necessary to singly and jointly assess the association between such risk and the hypothesized factors. Various statistical models will be needed to determine the potential relationships between breast cancer development and estimated exposures to environmental contamination. To apply the models, data must be assembled from a variety of sources, converted into the statistical models’ parameters, and delivered effectively to researchers and policy makers. A Web-enabled decision technology system can be developed to provide the needed functionality. This chapter will present a conceptual architecture for such a decision technology system. First, there will be a brief overview of a typical geographical analysis. Next, the chapter will present the conceptual Web-based decision technology system and illustrate how the system can assist users in diagnosing and treating breast cancer. The chapter will conclude with an examination of the potential benefits from system use and the implications for breast cancer research and practice

    EXODuS: Exploratory OLAP over Document Stores

    Get PDF
    OLAP has been extensively used for a couple of decades as a data analysis approach to support decision making on enterprise structured data. Now, with the wide diffusion of NoSQL databases holding semi-structured data, there is a growing need for enabling OLAP on document stores as well, to allow non-expert users to get new insights and make better decisions. Unfortunately, due to their schemaless nature, document stores are hardly accessible via direct OLAP querying. In this paper we propose EXODuS, an interactive, schema-on-read approach to enable OLAP querying of document stores in the context of self-service BI and exploratory OLAP. To discover multidimensional hierarchies in document stores we adopt a data-driven approach based on the mining of approximate functional dependencies; to ensure good performances, we incrementally build local portions of hierarchies for the levels involved in the current user query. Users execute an analysis session by expressing well-formed multidimensional queries related by OLAP operations; these queries are then translated into the native query language of MongoDB, one of the most popular document-based DBMS. An experimental evaluation on real-world datasets shows the efficiency of our approach and its compatibility with a real-time setting

    Incorporation of ontologies in data warehouse/business intelligence systems - A systematic literature review

    Get PDF
    Semantic Web (SW) techniques, such as ontologies, are used in Information Systems (IS) to cope with the growing need for sharing and reusing data and knowledge in various research areas. Despite the increasing emphasis on unstructured data analysis in IS, structured data and its analysis remain critical for organizational performance management. This systematic literature review aims at analyzing the incorporation and impact of ontologies in Data Warehouse/Business Intelligence (DW/BI) systems, contributing to the current literature by providing a classification of works based on the field of each case study, SW techniques used, and the authors’ motivations for using them, with a focus on DW/BI design, development and exploration tasks. A search strategy was developed, including the definition of keywords, inclusion and exclusion criteria, and the selection of search engines. Ontologies are mainly defined using the Ontology Web Language standard to support multiple DW/BI tasks, such as Dimensional Modeling, Requirement Analysis, Extract-Transform-Load, and BI Application Design. Reviewed authors present a variety of motivations for ontology-driven solutions in DW/BI, such as eliminating or solving data heterogeneity/semantics problems, increasing interoperability, facilitating integration, or providing semantic content for requirements and data analysis. Further, implications for practice and research agenda are indicated.info:eu-repo/semantics/publishedVersio

    Multidimensional modeling and analysis of large and complex watercourse data: an OLAP-based solution

    Get PDF
    International audienceThis paper presents the application of Data Warehouse (DW) and On-Line Analytical Processing (OLAP) technologies to the field of water quality assessment. The European Water Framework Directive (DCE, 2000) underlined the necessity of having operational tools to help in the interpretation of the complex and abundant information regarding running waters and their functioning. Several studies have exemplified the interest in DWs for integrating large volumes of data and in OLAP tools for data exploration and analysis. Based on free software tools, we propose an extensible relational OLAP system for the analysis of physicochemical and hydrobiological watercourse data. This system includes: (i) two data cubes; (ii) an Extract, Transform and Load (ETL) tool for data integration; and (iii) tools for OLAP exploration. Many examples of OLAP analysis (thematic, temporal, spatiotemporal, and multiscale) are provided. We have extended an existing framework with complex aggregate functions that are used to define complex analysis indicators. Additional analysis dimensions are also introduced to allow their calculation and also for purposes of rendering information. Finally, we propose two strategies to address the problem of summarizing heterogeneous measurement units by: (i) transforming source data at the ETL tier, and (ii) introducing an additional analysis dimension at the OLAP server tier
    • …
    corecore