2,408 research outputs found

    The interactive design approach for aerodynamic shape design optimisation of the Aegis UAV

    Get PDF
    In this work, an interactive optimisation framework—a combination of a low fidelity flow solver, Athena Vortex Lattice (AVL), and an interactive Multi-Objective Particle Swarm Optimisation (MOPSO)—is proposed for aerodynamic shape design optimisation of any aerial vehicle platform. This paper demonstrates the benefits of interactive optimisation—reduction of computational time with high optimality levels. Progress towards the most preferred solutions is made by having the Decision Maker (DM) periodically provide preference information once the MOPSO iterations are underway. By involving the DM within the optimisation process, the search is directed to the region of interest, which accelerates the process. The flexibility and eciency of undertaking optimisation interactively have been demonstrated by comparing the interactive results with the non-interactive results of an optimum design case obtained using Multi-Objective Tabu Search (MOTS) for the Aegis UAV. The obtained results show the superiority of using an interactive approach for the aerodynamic shape design, compared to posteriori approaches. By carrying out the optimisation using interactive MOPSO it was shown to be possible to obtain similar results to non-interactive MOTS with only half the evaluations. Moreover, much of the usual complexity of post-data-analysis with posteriori approaches is avoided, since the DM is involved in the search process

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    Population extremal optimisation for discrete multi-objective optimisation problems

    Get PDF
    The power to solve intractable optimisation problems is often found through population based evolutionary methods. These include, but are not limited to, genetic algorithms, particle swarm optimisation, differential evolution and ant colony optimisation. While showing much promise as an effective optimiser, extremal optimisation uses only a single solution in its canonical form – and there are no standard population mechanics. In this paper, two population models for extremal optimisation are proposed and applied to a multi-objective version of the generalised assignment problem. These models use novel intervention/interaction strategies as well as collective memory in order to allow individual population members to work together. Additionally, a general non-dominated local search algorithm is developed and tested. Overall, the results show that improved attainment surfaces can be produced using population based interactions over not using them. The new EO approach is also shown to be highly competitive with an implementation of NSGA-II.No Full Tex

    Design synthesis of complex ship structures

    Get PDF

    Where creativity comes from: the social spaces of embodied minds

    Get PDF
    This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality. This paper explores creative design, social interaction and perception. It proposes that creativity at a social level is not a result of many individuals trying to be creative at a personal level, but occurs naturally in the social interaction between comparatively simple minds embodied in a complex world. Particle swarm algorithms can model group interaction in shared spaces, but design space is not necessarily one pre-defined space of set parameters on which everyone can agree, as individual minds are very different. A computational model is proposed that allows a similar swarm to occur between spaces of different description and even dimensionality

    Interactive optimisation for high-lift design.

    Get PDF
    Interactivity always involves two entities; one of them by default is a human user. The specialised subject of human factors is introduced in the context of computational aerodynamics and optimisation, specifically a high-lift aerofoil. The trial and error nature of a design process hinges on designer’s knowledge, skill and intuition. A basic, important assumption of a man-machine system is that in solving a problem, there are some steps in which the computer has an advantageous edge while in other steps a human has dominance. Computational technologies are now an indispensable part of aerospace technology; algorithms involving significant user interaction, either during the process of generating solutions or as a component of post-optimisation evaluation where human decision making is involved are increasingly becoming popular, multi-objective particle swarm is one such optimiser. Several design optimisation problems in engineering are by nature multi-objective; the interest of a designer lies in simultaneous optimisation against two or more objectives which are usually in conflict. Interactive optimisation allows the designer to understand trade-offs between various objectives, and is generally used as a tool for decision making. The solution to a multi-objective problem, one where betterment in one objective occurs over the deterioration of at least one other objective is called a Pareto set. There are multiple solutions to a problem and multiple betterment ideas to an already existing design. The final responsibility of identifying an optimal solution or idea rests on the design engineers and decision making is done based on quantitative metrics, displayed as numbers or graphs. However, visualisation, ergonomics and human factors influence and impact this decision making process. A visual, graphical depiction of the Pareto front is oftentimes used as a design aid tool for purposes of decision making with chances of errors and fallacies fundamentally existing in engineering design. An effective visualisation tool benefits complex engineering analyses by providing the decision-maker with a good imagery of the most important information. Two high-lift aerofoil data-sets have been used as test-case examples; a multi-element solver, an optimiser based on swarm intelligence technique, and visual techniques which include parallel co-ordinates, heat map, scatter plot, self-organising map and radial coordinate visualisation comprise the module. Factors that affect optima and various evaluation criteria have been studied in light of the human user. This research enquires into interactive optimisation by adapting three interactive approaches: information trade-off, reference point and classification, and investigates selected visualisation techniques which act as chief aids in the context of high-lift design trade studies. Human-in-the-loop engineering, man-machine interaction & interface along with influencing factors, reliability, validation and verification in the presence of design uncertainty are considered. The research structure, choice of optimiser and visual aids adapted in this work are influenced by and streamlined to fit with the parallel on-going development work on Airbus’ Python based tool. Results, analysis, together with literature survey are presented in this report. The words human, user, engineer, aerodynamicist, designer, analyst and decision-maker/ DM are synonymous, and are used interchangeably in this research. In a virtual engineering setting, for an efficient interactive optimisation task, a suitable visualisation tool is a crucial prerequisite. Various optimisation design tools & methods are most useful when combined with a human engineer's insight is the underlying premise of this work; questions such as why, what, how might help aid aeronautical technical innovation.PhD in Aerospac

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin
    • …
    corecore