559 research outputs found

    Tailored displays to compensate for visual aberrations

    Get PDF
    We introduce tailored displays that enhance visual acuity by decomposing virtual objects and placing the resulting anisotropic pieces into the subject's focal range. The goal is to free the viewer from needing wearable optical corrections when looking at displays. Our tailoring process uses aberration and scattering maps to account for refractive errors and cataracts. It splits an object's light field into multiple instances that are each in-focus for a given eye sub-aperture. Their integration onto the retina leads to a quality improvement of perceived images when observing the display with naked eyes. The use of multiple depths to render each point of focus on the retina creates multi-focus, multi-depth displays. User evaluations and validation with modified camera optics are performed. We propose tailored displays for daily tasks where using eyeglasses are unfeasible or inconvenient (e.g., on head-mounted displays, e-readers, as well as for games); when a multi-focus function is required but undoable (e.g., driving for farsighted individuals, checking a portable device while doing physical activities); or for correcting the visual distortions produced by high-order aberrations that eyeglasses are not able to.Conselho Nacional de Pesquisas (Brazil) (CNPq-Brazil fellowship 142563/2008-0)Conselho Nacional de Pesquisas (Brazil) (CNPq-Brazil fellowship 308936/2010-8)Conselho Nacional de Pesquisas (Brazil) (CNPq-Brazil fellowship 480485/2010- 0)National Science Foundation (U.S.) (NSF CNS 0913875)Alfred P. Sloan Foundation (fellowship)United States. Defense Advanced Research Projects Agency (DARPA Young Faculty Award)Massachusetts Institute of Technology. Media Laboratory (Consortium Members

    Liquid Crystal Microlenses for Autostereoscopic Displays

    Get PDF
    Three-dimensional vision has acquired great importance in the audiovisual industry in the past ten years. Despite this, the first generation of autostereoscopic displays failed to generate enough consumer excitement. Some reasons are little 3D content and performance issues. For this reason, an exponential increase in three-dimensional vision research has occurred in the last few years. In this review, a study of the historical impact of the most important technologies has been performed. This study is carried out in terms of research manuscripts per year. The results reveal that research on spatial multiplexing technique is increasing considerably and today is the most studied. For this reason, the state of the art of this technique is presented. The use of microlenses seems to be the most successful method to obtain autostereoscopic vision. When they are fabricated with liquid crystal materials, extended capabilities are produced. Among the numerous techniques for manufacturing liquid crystal microlenses, this review covers the most viable designs for its use in autostereoscopic displays. For this reason, some of the most important topologies and their relation with autostereoscopic displays are presented. Finally, the challenges in some recent applications, such as portable devices, and the future of three-dimensional displays based on liquid crystal microlenses are outlined.This work was supported in part by Ministerio de EconomĂ­a y Competitividad of Spain (grant No. TEC2013-47342-C2-2-R) and the R&D Program SINFOTON S2013/MIT-2790 of the Comunidad de Madrid
    • …
    corecore