3,390 research outputs found

    Penghasilan manual rjngkas penggunaan alat Total Station Sokkia Set5f dan Perisian Sdr Mapping & Design untuk automasi ukur topografi

    Get PDF
    Projek ini dilaksanakan untuk menghasilkan manual ringkas penggunaan alat Total Station Sokkia SET5F dan Perisian SDR Mapping & Design dalam menghasilkan pelan topografi yang lengkap mengikut konsep field to finish. Manual telah dihasilkan dalam dua bentuk iaitu buku dan CD-ROM. Manual ini telah dinilai berdasarkan data yang diperolehi daripada 7 orang responden melalui kaedah Borang Penilaian Manual. Analisis data dilakukan menggunakan perisian SPSS versi 11.0. Hasil analisis skor min menunjukkan kesemua responden bersetuju bahawa manual dalam bentuk buku ini menarik Min ( M ) ^ ^ dan Sisihan Piawai (SD) = .535 tetapi kurang interaktif (M) = 2.29 dan (SD) = 0.488. Berbanding dengan manual dalam format CD-ROM yang mencatat nilai (M) = 3.57 dan (SD) = 0.535 semua responden bersetuju bahawa manual ini mesra pengguna dan lebih interakti

    An Interactive Fuzzy Satisficing Method for Fuzzy Random Multiobjective 0-1 Programming Problems through Probability Maximization Using Possibility

    Get PDF
    In this paper, we focus on multiobjective 0-1 programming problems under the situation where stochastic uncertainty and vagueness exist at the same time. We formulate them as fuzzy random multiobjective 0-1 programming problems where coefficients of objective functions are fuzzy random variables. For the formulated problem, we propose an interactive fuzzy satisficing method through probability maximization using of possibility

    Multi-level Multi-objective Quadratic Fractional Programming Problem with Fuzzy Parameters: A FGP Approach

    Get PDF
    The motivation behind this paper is to present multi-level multi-objective quadratic fractional programming (ML-MOQFP) problem with fuzzy parameters in the constraints. ML-MOQFP problem is an important class of non-linear fractional programming problem. These type of problems arise in many fields such as production planning, financial and corporative planning, health care and hospital planning. Firstly, the concept of the -cut and fuzzy partial order relation are applied to transform the set of fuzzy constraints into a common crisp set. Then, the quadratic fractional objective functions in each level are transformed into non-linear objective functions based on a proposed transformation. Secondly, in the proposed model, separate non-linear membership functions for each objective function of the ML-MOQFP problem are defined. Then, the fuzzy goal programming (FGP) approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach

    A fuzzy goal programming approach to solving decentralized bi-level multi-objective linear fractional programming problems

    Get PDF
    This paper presents a new approach for solving decentralized bi-level multi-objective linear fractional programming problems. The main goal was to find a simple algorithm with high confidence of decision-makers in the results. First, all the linear fractional programming models on the given set of constraints were solved separately. Next, all the linear fractional objective functions were linearized, membership functions of objective functions and decision variables controlled by decision-makers at the highest level calculated, and a fuzzy multi-objective linear programming model formed and solved as linear goal programming problem by using simplex algorithm. The efficiency of the proposed algorithm was investigated using an economic example, and the obtained results compared with those obtained using an existing method

    FLIP - Multiobjective Fuzzy Linear Programming Package

    Get PDF
    FLIP (Fuzzy LInear Programming) is a package designed to help in analysis of multiobjective linear programming (MOLP) problems in an uncertain environment. The uncertainty of data is modeled by L-R type fuzzy numbers. They can appear in the objective functions as well as on the both sides of the constraints. The input data to the FLIP package include the characteristics of the analyzed fuzzy MOLP problem, i.e., the number of criteria, constraints and decision variables, fuzzy cost coefficients for every objective and fuzzy coefficients of LHS and RHS for all constraints. The data loading is supported by a graphical presentation of fuzzy coefficients. The calculation is preceded by a transformation of the fuzzy MOLP problem into a multiobjective linear fractional program. It is then solved with an interactive method using a linear programming procedure as the only optimiser. In every iteration, one gets a series of solutions that are presented very clearly in a graphical and numerical form. In FLIP, interaction with the user takes place at two levels: first, when safety parameters have to be defined in the transformation phase, and second, when the associate deterministic problem is solved. The package is written in TURBO-Pascal and can be used on microcomputers compatible with IBM-PC XT/AT with hard disc and a graphic card

    Interactive Fuzzy Programming for Stochastic Two-level Linear Programming Problems through Probability Maximization

    Get PDF
    This paper considers stochastic two-level linear programming problems. Using the concept of chance constraints and probability maximization, original problems are transformed into deterministic ones. An interactive fuzzy programming method is presented for deriving a satisfactory solution efficiently with considerations of overall satisfactory balance

    Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems

    Get PDF
    This paper presents a fuzzy goal programming (FGP) procedure for solving bilevel multiobjective linear fractional programming (BL-MOLFP) problems. It makes an extension work of Moitra and Pal (2002) and Pal et al. (2003). In the proposed procedure, the membership functions for the defined fuzzy goals of the decision makers (DMs) objective functions at both levels as well as the membership functions for vector of fuzzy goals of the decision variables controlled by first-level decision maker are developed first in the model formulation of the problem. Then a fuzzy goal programming model to minimize the group regret of degree of satisfactions of both the decision makers is developed to achieve the highest degree (unity) of each of the defined membership function goals to the extent possible by minimizing their deviational variables and thereby obtaining the most satisfactory solution for both decision makers. The method of variable change on the under- and over-deviational variables of the membership goals associated with the fuzzy goals of the model is introduced to solve the problem efficiently by using linear goal programming (LGP) methodology. Illustrative numerical example is given to demonstrate the procedure

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques
    corecore