26,948 research outputs found

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Challenging Ubiquitous Inverted Files

    Get PDF
    Stand-alone ranking systems based on highly optimized inverted file structures are generally considered ‘the’ solution for building search engines. Observing various developments in software and hardware, we argue however that IR research faces a complex engineering problem in the quest for more flexible yet efficient retrieval systems. We propose to base the development of retrieval systems on ‘the database approach’: mapping high-level declarative specifications of the retrieval process into efficient query plans. We present the Mirror DBMS as a prototype implementation of a retrieval system based on this approach

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Integration of Exploration and Search: A Case Study of the M3 Model

    Get PDF
    International audienceEffective support for multimedia analytics applications requires exploration and search to be integrated seamlessly into a single interaction model. Media metadata can be seen as defining a multidimensional media space, casting multimedia analytics tasks as exploration, manipulation and augmentation of that space. We present an initial case study of integrating exploration and search within this multidimensional media space. We extend the M3 model, initially proposed as a pure exploration tool, and show that it can be elegantly extended to allow searching within an exploration context and exploring within a search context. We then evaluate the suitability of relational database management systems, as representatives of today’s data management technologies, for implementing the extended M3 model. Based on our results, we finally propose some research directions for scalability of multimedia analytics

    The Mirror MMDBMS architecture

    Get PDF
    Handling large collections of digitized multimedia data, usually referred to as multimedia digital libraries, is a major challenge for information technology. The Mirror DBMS is a research database system that is developed to better understand the kind of data management that is required in the context of multimedia digital libraries (see also URL http://www.cs.utwente.nl/~arjen/mmdb.html). Its main features are an integrated approach to both content management and (traditional) structured data management, and the implementation of an extensible object-oriented logical data model on a binary relational physical data model. The focus of this work is aimed at design for scalability

    Human-Level Performance on Word Analogy Questions by Latent Relational Analysis

    Get PDF
    This paper introduces Latent Relational Analysis (LRA), a method for measuring relational similarity. LRA has potential applications in many areas, including information extraction, word sense disambiguation, machine translation, and information retrieval. Relational similarity is correspondence between relations, in contrast with attributional similarity, which is correspondence between attributes. When two words have a high degree of attributional similarity, we call them synonyms. When two pairs of words have a high degree of relational similarity, we say that their relations are analogous. For example, the word pair mason/stone is analogous to the pair carpenter/wood; the relations between mason and stone are highly similar to the relations between carpenter and wood. Past work on semantic similarity measures has mainly been concerned with attributional similarity. For instance, Latent Semantic Analysis (LSA) can measure the degree of similarity between two words, but not between two relations. Recently the Vector Space Model (VSM) of information retrieval has been adapted to the task of measuring relational similarity, achieving a score of 47% on a collection of 374 college-level multiple-choice word analogy questions. In the VSM approach, the relation between a pair of words is characterized by a vector of frequencies of predefined patterns in a large corpus. LRA extends the VSM approach in three ways: (1) the patterns are derived automatically from the corpus (they are not predefined), (2) the Singular Value Decomposition (SVD) is used to smooth the frequency data (it is also used this way in LSA), and (3) automatically generated synonyms are used to explore reformulations of the word pairs. LRA achieves 56% on the 374 analogy questions, statistically equivalent to the average human score of 57%. On the related problem of classifying noun-modifier relations, LRA achieves similar gains over the VSM, while using a smaller corpus
    • 

    corecore