52,258 research outputs found

    Segue: Overviewing Evolution Patterns of Egocentric Networks by Interactive Construction of Spatial Layouts

    Full text link
    Getting the overall picture of how a large number of ego-networks evolve is a common yet challenging task. Existing techniques often require analysts to inspect the evolution patterns of ego-networks one after another. In this study, we explore an approach that allows analysts to interactively create spatial layouts in which each dot is a dynamic ego-network. These spatial layouts provide overviews of the evolution patterns of ego-networks, thereby revealing different global patterns such as trends, clusters and outliers in evolution patterns. To let analysts interactively construct interpretable spatial layouts, we propose a data transformation pipeline, with which analysts can adjust the spatial layouts and convert dynamic egonetworks into event sequences to aid interpretations of the spatial positions. Based on this transformation pipeline, we developed Segue, a visual analysis system that supports thorough exploration of the evolution patterns of ego-networks. Through two usage scenarios, we demonstrate how analysts can gain insights into the overall evolution patterns of a large collection of ego-networks by interactively creating different spatial layouts.Comment: Published at IEEE Conference on Visual Analytics Science and Technology (IEEE VAST 2018

    Fast filtering and animation of large dynamic networks

    Full text link
    Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.Comment: 6 figures, 2 table

    Social network visualizations of streaming data: Design and use considerations

    Get PDF
    Abstract. Understanding networks of people linked by some common factor is an important task in many domains. Most commonly, a user creates a visualization of social interactions to see the patterns of interactions between individuals, and then used to find and identify important groups. Networks of individuals and links between them form graphs that vary with time and importance. Visualizing the changes in social networks over time is a non-trivial design task, imposing interesting demands on the visualization and interaction model. In this paper we briefly analyze the user requirements for interactive visualizations of streaming social network data. We find that these continuously updated, dynamic displays need: (1) controls that permit time-based control of the visualization, including pausing, restarting and variable speed playback of the data, (2) the ability to continue importing and processing streamed information even the display is paused, (3) a visually represented method to track changes in the displays over time, (4) interaction methods to allow drilldown from the visualization to original source data, and (5) information extraction from the displayed social network. We describe our visualization tool, SSNV, showing how it embodies these interaction requirements

    Evaluation of two interaction techniques for visualization of dynamic graphs

    Full text link
    Several techniques for visualization of dynamic graphs are based on different spatial arrangements of a temporal sequence of node-link diagrams. Many studies in the literature have investigated the importance of maintaining the user's mental map across this temporal sequence, but usually each layout is considered as a static graph drawing and the effect of user interaction is disregarded. We conducted a task-based controlled experiment to assess the effectiveness of two basic interaction techniques: the adjustment of the layout stability and the highlighting of adjacent nodes and edges. We found that generally both interaction techniques increase accuracy, sometimes at the cost of longer completion times, and that the highlighting outclasses the stability adjustment for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    SPECTRUM-BASED AND COLLABORATIVE NETWORK TOPOLOGY ANALYSIS AND VISUALIZATION

    Get PDF
    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying net- work topology is very important to network analysis. In this dissertation, we study networks by analyzing their topology structure to explore community structure, the relationship among network members and links as well as their importance to the belonged communities. We provide new network visualization methods by studying network topology through two aspects: spectrum-based and collaborative visualiza- tion techniques. For the spectrum-based network visualization, we use eigenvalues and eigenvectors to express network topological features instead of using network datasets directly. We provide a visual analytics approach to analyze unsigned networks based on re- cent achievements on spectrum-based analysis techniques which utilize the features of node distribution and coordinates in the high dimensional spectral space. To assist the interactive exploration of network topologies, we have designed network visual- ization and interactive analysis methods allowing users to explore the global topology structure. Further, to address the question of real-life applications involving of both positive and negative relationships, we present a spectral analysis framework to study both signed and unsigned networks. Our framework concentrates on two problems of net- work analysis - what are the important spectral patterns and how to use them to study signed networks. Based on the framework, we present visual analysis methods, which guide the selection of k-dimensional spectral space and interactive exploration of network topology. With the increasing complexity and volume of dynamic networks, it is important to adopt strategies of joint decision-making through developing collaborative visualiza- tion approaches. Thus, we design and develop a collaborative detection mechanism with matrix visualization for complex intrusion detection applications. We establish a set of collaboration guidelines for team coordination with distributed visualization tools. We apply them to generate a prototype system with interactions that facilitates collaborative visual analysis. In order to evaluate the collaborative detection mechanism, a formal user study is presented. The user study monitored participants to collaborate under co-located and distributed collaboration environments to tackle the problems of intrusion detection. We have observed participants’ behaviors and collected their performances from the aspects of coordination and communication. Based on the results, we conclude several coordination strategies and summarize the values of communication for collaborative visualization. Our visualization methods have been demonstrated to be efficient topology explo- ration with both synthetic and real-life datasets in spectrum-based and collaborative exploration. We believe that our methods can provide useful information for future design and development of network topology visualization system

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    A semi-supervised approach to visualizing and manipulating overlapping communities

    Get PDF
    When evaluating a network topology, occasionally data structures cannot be segmented into absolute, heterogeneous groups. There may be a spectrum to the dataset that does not allow for this hard clustering approach and may need to segment using fuzzy/overlapping communities or cliques. Even to this degree, when group members can belong to multiple cliques, there leaves an ever present layer of doubt, noise, and outliers caused by the overlapping clustering algorithms. These imperfections can either be corrected by an expert user to enhance the clustering algorithm or to preserve their own mental models of the communities. Presented is a visualization that models overlapping community membership and provides an interactive interface to facilitate a quick and efficient means of both sorting through large network topologies and preserving the user's mental model of the structure. © 2013 IEEE
    • …
    corecore