99,797 research outputs found

    EmoCo: Visual analysis of emotion coherence in presentation videos

    Get PDF
    Emotions play a key role in human communication and public presentations. Human emotions are usually expressed through multiple modalities. Therefore, exploring multimodal emotions and their coherence is of great value for understanding emotional expressions in presentations and improving presentation skills. However, manually watching and studying presentation videos is often tedious and time-consuming. There is a lack of tool support to help conduct an efficient and in-depth multi-level analysis. Thus, in this paper, we introduce EmoCo, an interactive visual analytics system to facilitate efficient analysis of emotion coherence across facial, text, and audio modalities in presentation videos. Our visualization system features a channel coherence view and a sentence clustering view that together enable users to obtain a quick overview of emotion coherence and its temporal evolution. In addition, a detail view and word view enable detailed exploration and comparison from the sentence level and word level, respectively. We thoroughly evaluate the proposed system and visualization techniques through two usage scenarios based on TED Talk videos and interviews with two domain experts. The results demonstrate the effectiveness of our system in gaining insights into emotion coherence in presentations.Comment: 11 pages, 8 figures. Accepted by IEEE VAST 201

    Exploring the Affective Loop

    Get PDF
    Research in psychology and neurology shows that both body and mind are involved when experiencing emotions (Damasio 1994, Davidson et al. 2003). People are also very physical when they try to communicate their emotions. Somewhere in between beings consciously and unconsciously aware of it ourselves, we produce both verbal and physical signs to make other people understand how we feel. Simultaneously, this production of signs involves us in a stronger personal experience of the emotions we express. Emotions are also communicated in the digital world, but there is little focus on users' personal as well as physical experience of emotions in the available digital media. In order to explore whether and how we can expand existing media, we have designed, implemented and evaluated /eMoto/, a mobile service for sending affective messages to others. With eMoto, we explicitly aim to address both cognitive and physical experiences of human emotions. Through combining affective gestures for input with affective expressions that make use of colors, shapes and animations for the background of messages, the interaction "pulls" the user into an /affective loop/. In this thesis we define what we mean by affective loop and present a user-centered design approach expressed through four design principles inspired by previous work within Human Computer Interaction (HCI) but adjusted to our purposes; /embodiment/ (Dourish 2001) as a means to address how people communicate emotions in real life, /flow/ (Csikszentmihalyi 1990) to reach a state of involvement that goes further than the current context, /ambiguity/ of the designed expressions (Gaver et al. 2003) to allow for open-ended interpretation by the end-users instead of simplistic, one-emotion one-expression pairs and /natural but designed expressions/ to address people's natural couplings between cognitively and physically experienced emotions. We also present results from an end-user study of eMoto that indicates that subjects got both physically and emotionally involved in the interaction and that the designed "openness" and ambiguity of the expressions, was appreciated and understood by our subjects. Through the user study, we identified four potential design problems that have to be tackled in order to achieve an affective loop effect; the extent to which users' /feel in control/ of the interaction, /harmony and coherence/ between cognitive and physical expressions/,/ /timing/ of expressions and feedback in a communicational setting, and effects of users' /personality/ on their emotional expressions and experiences of the interaction

    Machine Understanding of Human Behavior

    Get PDF
    A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. If this prediction is to come true, then next generation computing, which we will call human computing, should be about anticipatory user interfaces that should be human-centered, built for humans based on human models. They should transcend the traditional keyboard and mouse to include natural, human-like interactive functions including understanding and emulating certain human behaviors such as affective and social signaling. This article discusses a number of components of human behavior, how they might be integrated into computers, and how far we are from realizing the front end of human computing, that is, how far are we from enabling computers to understand human behavior

    Generative theatre of totality

    Get PDF
    Generative art can be used for creating complex multisensory and multimedia experiences within predetermined aesthetic parameters, characteristic of the performing arts and remarkably suitable to address Moholy-Nagy's Theatre of Totality vision. In generative artworks the artist will usually take on the role of an experience framework designer, and the system evolves freely within that framework and its defined aesthetic boundaries. Most generative art impacts visual arts, music and literature, but there does not seem to be any relevant work exploring the cross-medium potential, and one could confidently state that most generative art outcomes are abstract and visual, or audio. It is the goal of this article to propose a model for the creation of generative performances within the Theatre of Totality's scope, derived from stochastic Lindenmayer systems, where mapping techniques are proposed to address the seven variables addressed by Moholy-Nagy: light, space, plane, form, motion, sound and man ("man" is replaced in this article with "human", except where quoting from the author), with all the inherent complexities

    Designing gestures for affective input: an analysis of shape, effort and valence

    Get PDF
    We discuss a user-centered approach to incorporating affective expressions in interactive applications, and argue for a design that addresses both body and mind. In particular, we have studied the problem of finding a set of affective gestures. Based on previous work in movement analysis and emotion theory [Davies, Laban and Lawrence, Russell], and a study of an actor expressing emotional states in body movements, we have identified three underlying dimensions of movements and emotions: shape, effort and valence. From these dimensions we have created a new affective interaction model, which we name the affective gestural plane model. We applied this model to the design of gestural affective input to a mobile service for affective messages
    corecore