78 research outputs found

    Immersive safe oceans technology: Developing virtual onboard training episodes for maritime safety

    Get PDF
    © 2020 by the authors. This paper introduces four safety training episodes and virtual training technology called Immersive Safe Oceans which can be used in further education of professionals in immersive training scenarios. These episodes were developed for maritime safety and are under testing. Immersive Safe Oceans Technology is a cost-effective, portable technology that can be used on board just in time or in maritime training centers. Four introduced episodes, namely, (1) command bridge, (2) machine room, (3) crane, and (4) fire safety, illustrate how Immersive Safe Oceans technology can be used in various professional training scenarios. These episodes also emphasize the growing need for virtual reality training in the shipping industry. As a result, next generation learning will happen onboard in sophisticated virtual training centers

    Diverse approaches to learning with immersive Virtual Reality identified from a systematic review

    Get PDF
    To investigate how learning in immersive Virtual Reality was designed in contemporary educational studies, this systematic literature review identified nine design features and analysed 219 empirical studies on the designs of learning activities with immersive Virtual Reality. Overall, the technological features for physical presence were more readily implemented and investigated than pedagogical features for learning engagement. Further analysis with k-means clustering revealed five approaches with varying levels of interactivity and openness in learning tasks, from watching virtual worlds passively to responding to personalised prompts. Such differences in the design appeared to stem from different practical and educational priorities, such as accessibility, interactivity, and engagement. This review highlights the diversity in the learning task designs in immersive Virtual Reality and illustrates how researchers are navigating practical and educational concerns. We recommend future empirical studies recognise the different approaches and priorities when designing and evaluating learning with immersive Virtual Reality. We also recommend that future systematic reviews investigate immersive Virtual Reality-based learning not only by learning topics or learner demographics, but also by task designs and learning experiences

    Diverse approaches to learning with immersive Virtual Reality identified from a systematic review

    Get PDF
    To investigate how learning in immersive Virtual Reality was designed in contemporary educational studies, this systematic literature review identified nine design features and analysed 219 empirical studies on the designs of learning activities with immersive Virtual Reality. Overall, the technological features for physical presence were more readily implemented and investigated than pedagogical features for learning engagement. Further analysis with k-means clustering revealed five approaches with varying levels of interactivity and openness in learning tasks, from watching virtual worlds passively to responding to personalised prompts. Such differences in the design appeared to stem from different practical and educational priorities, such as accessibility, interactivity, and engagement. This review highlights the diversity in the learning task designs in immersive Virtual Reality and illustrates how researchers are navigating practical and educational concerns. We recommend future empirical studies recognise the different approaches and priorities when designing and evaluating learning with immersive Virtual Reality. We also recommend that future systematic reviews investigate immersive Virtual Reality-based learning not only by learning topics or learner demographics, but also by task designs and learning experiences

    A Virtual Umbilical Cord

    Get PDF
    English: Immersive Virtual Reality applied to study body representation in humans] Immersive Virtual Reality (IVR) techniques have been applied successfully in many areas as phobia treatment and pain alleviation. Our main aim is to use IVR to study the representation that our brain has of our body representation. In this project we study the plasticity our brain has to change the bodily image. To proceed with the study, we built a virtual reality (VR) application that involves software components, hardware VR devices, haptics and physio sensors

    Teaching Science Lab Safety: Are Virtual Simulations Effective?

    Get PDF
    abstract: The purpose of this study was to investigate the impact of immersion on knowledge, cognitive load, and presence in a simulation designed to deliver a lesson on science lab safety training. 108 participants were randomly assigned to one of three conditions: high immersion (played an interactive simulation about lab safety in a VR headset), medium immersion (played the same interactive simulation on the computer), or low immersion (watched a video and read about lab safety procedures). Participants completed a pretest, a science lab safety training, a posttest (same as the pretest), a questionnaire with subjective presence questions, and a questionnaire with subjective cognitive load questions. Participants were again asked to complete a follow-up test (same as the pretest and posttest) a week later. The results revealed three significant findings: (a) Participants in the high and medium immersion conditions had significantly higher knowledge scores at posttest and follow-up than their peers in the low immersion condition, (b) Participants in the high and medium immersion conditions reported higher presence scores than participants in the low immersion conditions. (c) Correlation coefficients suggested that the higher the immersion and presence, the higher the knowledge scores are at posttest and follow-up. In addition, multiple hierarchical linear regression models were conducted out of which one was significant.Dissertation/ThesisDoctoral Dissertation Educational Technology 201

    Measuring the effectiveness of virtual training : a systematic review

    Get PDF
    The amount of research on virtual reality learning tools increases with time. Despite the diverse environments and theoretical foundations, enough data have been accumulated in recent years to provide a systematic review of the methods used. We pose ten questions concerning the methodological aspects of these studies. We performed a search in three databases according to the PRISMA guidelines and evaluated several characteristics, with particular emphasis on researchers' methodological decisions. We found an increase over time in the number of studies on the effectiveness of VR-based learning. We also identified shortcomings related to how the duration and number of training sessions are reported. We believe that these two factors could affect the effectiveness of VR-based training. Furthermore, when using the Kirkpatrick model, a significant imbalance can be observed in favor of outcomes from the ‘Reaction’ and ‘Learning’ levels compared to the ‘Behavior’ and ‘Results’ levels. The last of these was not used in any of the 330 reviewed studies. These results highlight the importance of research on the effectiveness of VR training. Taking into account the identified methodological shortcomings will allow for more significant research on this topic in the future

    The matrix revisited: A critical assessment of virtual reality technologies for modeling, simulation, and training

    Get PDF
    A convergence of affordable hardware, current events, and decades of research have advanced virtual reality (VR) from the research lab into the commercial marketplace. Since its inception in the 1960s, and over the next three decades, the technology was portrayed as a rarely used, high-end novelty for special applications. Despite the high cost, applications have expanded into defense, education, manufacturing, and medicine. The promise of VR for entertainment arose in the early 1990\u27s and by 2016 several consumer VR platforms were released. With VR now accessible in the home and the isolationist lifestyle adopted due to the COVID-19 global pandemic, VR is now viewed as a potential tool to enhance remote education. Drawing upon over 17 years of experience across numerous VR applications, this dissertation examines the optimal use of VR technologies in the areas of visualization, simulation, training, education, art, and entertainment. It will be demonstrated that VR is well suited for education and training applications, with modest advantages in simulation. Using this context, the case is made that VR can play a pivotal role in the future of education and training in a globally connected world

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools
    • …
    corecore