2,791 research outputs found

    RE@CT - Immersive Production and Delivery of Interactive 3D Content

    No full text
    International audienceThis paper describes the aims and concepts of the FP7 RE@CT project. Building upon the latest advances in 3D capture and free-viewpoint video RE@CT aims to revolutionise the production of realistic characters and significantly reduce costs by developing an automated process to extract and represent animated characters from actor performance capture in a multiple camera studio. The key innovation is the development of methods for analysis and representation of 3D video to allow reuse for real-time interactive animation. This will enable efficient authoring of interactive characters with video quality appearance and motion

    Application-driven visual computing towards industry 4.0 2018

    Get PDF
    245 p.La Tesis recoge contribuciones en tres campos: 1. Agentes Virtuales Interactivos: autónomos, modulares, escalables, ubicuos y atractivos para el usuario. Estos IVA pueden interactuar con los usuarios de manera natural.2. Entornos de RV/RA Inmersivos: RV en la planificación de la producción, el diseño de producto, la simulación de procesos, pruebas y verificación. El Operario Virtual muestra cómo la RV y los Co-bots pueden trabajar en un entorno seguro. En el Operario Aumentado la RA muestra información relevante al trabajador de una manera no intrusiva. 3. Gestión Interactiva de Modelos 3D: gestión online y visualización de modelos CAD multimedia, mediante conversión automática de modelos CAD a la Web. La tecnología Web3D permite la visualización e interacción de estos modelos en dispositivos móviles de baja potencia.Además, estas contribuciones han permitido analizar los desafíos presentados por Industry 4.0. La tesis ha contribuido a proporcionar una prueba de concepto para algunos de esos desafíos: en factores humanos, simulación, visualización e integración de modelos

    Self adaptive animation based on user perspective

    Get PDF
    In this paper we present a new character animation technique in which the animation adapts itself based on the change in the user's perspective, so that when the user moves and their point of viewing the animation changes, then the character animation adapts itself in response to that change. The resulting animation, generated in real-time, is a blend of key animations provided a priori by the animator. The blending is done with the help of efficient dual-quaternion transformation blending. The user's point of view is tracked using either computer vision techniques or a simple user-controlled input modality, such as mouse-based input. This tracked point of view is then used to suitably select the blend of animations. We show a way to author and use such animations in both virtual as well as augmented reality scenarios and demonstrate that it significantly heightens the sense of presence for the users when they interact with such self adaptive animations of virtual character

    Recreating Daily life in Pompeii

    Full text link
    [EN] We propose an integrated Mixed Reality methodology for recreating ancient daily life that features realistic simulations of animated virtual human actors (clothes, body, skin, face) who augment real environments and re-enact staged storytelling dramas. We aim to go further from traditional concepts of static cultural artifacts or rigid geometrical and 2D textual augmentations and allow for 3D, interactive, augmented historical character-based event representations in a mobile and wearable setup. This is the main contribution of the described work as well as the proposed extensions to AR Enabling technologies: a VR/AR character simulation kernel framework with real-time, clothed virtual humans that are dynamically superimposed on live camera input, animated and acting based on a predefined, historically correct scenario. We demonstrate such a real-time case study on the actual site of ancient Pompeii.The work presented has been supported by the Swiss Federal Office for Education and Science and the EU IST programme, in frame of the EU IST LIFEPLUS 34545 and EU ICT INTERMEDIA 38417 projects.Magnenat-Thalmann, N.; Papagiannakis, G. (2010). Recreating Daily life in Pompeii. Virtual Archaeology Review. 1(2):19-23. https://doi.org/10.4995/var.2010.4679OJS192312P. MILGRAM, F. KISHINO, (1994) "A Taxonomy of Mixed Reality Visual Displays", IEICE Trans. Information Systems, vol. E77-D, no. 12, pp. 1321-1329R. AZUMA, Y. BAILLOT, R. BEHRINGER, S. FEINER, S. JULIER, B. MACINTYRE, (2001) "Recent Advances in Augmented Reality", IEEE Computer Graphics and Applications, November/December http://dx.doi.org/10.1109/38.963459D. STRICKER, P. DÄHNE, F. SEIBERT, I. CHRISTOU, L. ALMEIDA, N. IOANNIDIS, (2001) "Design and Development Issues for ARCHEOGUIDE: An Augmented Reality-based Cultural Heritage On-site Guide", EuroImage ICAV 3D Conference in Augmented Virtual Environments and Three-dimensional Imaging, Mykonos, Greece, 30 May-01 JuneW. WOHLGEMUTH, G. TRIEBFÜRST, (2000)"ARVIKA: augmented reality for development, production and service", DARE 2000 on Designing augmented reality environments, Elsinore, Denmark http://dx.doi.org/10.1145/354666.354688H. TAMURA, H. YAMAMOTO, A. KATAYAMA, (2001) "Mixed reality: Future dreams seen at the border between real and virtual worlds", Computer Graphics and Applications, vol.21, no.6, pp.64-70 http://dx.doi.org/10.1109/38.963462M. PONDER, G. PAPAGIANNAKIS, T. MOLET, N. MAGNENAT-THALMANN, D. THALMANN, (2003) "VHD++ Development Framework: Towards Extendible, Component Based VR/AR Simulation Engine Featuring Advanced Virtual Character Technologies", IEEE Computer Society Press, CGI Proceedings, pp. 96-104 http://dx.doi.org/10.1109/cgi.2003.1214453Archaeological Superintendence of Pompeii (2009), http://www.pompeiisites.orgG. PAPAGIANNAKIS, S. SCHERTENLEIB, B. O'KENNEDY , M. POIZAT, N.MAGNENAT-THALMANN, A. STODDART, D.THALMANN, (2005) "Mixing Virtual and Real scenes in the site of ancient Pompeii",Journal of CAVW, p 11-24, Volume 16, Issue 1, John Wiley and Sons Ltd, FebruaryEGGES, A., PAPAGIANNAKIS, G., MAGNENAT-THALMANN, N., (2007) "Presence and Interaction in Mixed Reality", The Visual Computer, Springer-Verlag Volume 23, Number 5, MaySEO H., MAGNENAT-THALMANN N. (2003), An Automatic Modeling of Human Bodies from Sizing Parameters. In ACM SIGGRAPH, Symposium on Interactive 3D Graphics, pp19-26, pp234. http://dx.doi.org/10.1145/641480.641487VOLINO P., MAGNENAT-THALMANN N. (2006), Resolving Surface Collisions through Intersection Contour Minimization. In ACM Transactions on Graphics (Siggraph 2006 proceedings), 25(3), pp 1154-1159. http://dx.doi.org/10.1145/1179352.1142007http://dx.doi.org/10.1145/1141911.1142007PAPAGIANNAKIS, G., SINGH, G., MAGNENAT-THALMANN, N., (2008) "A survey of mobile and wireless technologies for augmented reality systems", Journal of Computer Animation and Virtual Worlds, John Wiley and Sons Ltd, 19, 1, pp. 3-22, February http://dx.doi.org/10.1002/cav.22

    A framework for human-like behavior in an immersive virtual world

    Get PDF
    Just as readers feel immersed when the story-line adheres to their experiences, users will more easily feel immersed in a virtual environment if the behavior of the characters in that environment adheres to their expectations, based on their life-long observations in the real world. This paper introduces a framework that allows authors to establish natural, human-like behavior, physical interaction and emotional engagement of characters living in a virtual environment. Represented by realistic virtual characters, this framework allows people to feel immersed in an Internet based virtual world in which they can meet and share experiences in a natural way as they can meet and share experiences in real life. Rather than just being visualized in a 3D space, the virtual characters (autonomous agents as well as avatars representing users) in the immersive environment facilitate social interaction and multi-party collaboration, mixing virtual with real

    Storytelling in the Metaverse: From Desktop to Immersive Virtual Reality Storyboarding

    Get PDF
    Creatives from the animation and film industries have always been experimenting with innovative tools and methodologies to improve the creation of prototypes of their visual sequences before bringing them to life. In recent years, as realistic real-time rendering techniques have emerged, the increasing popularity of virtual reality (VR) can lead to new approaches and solutions, leveraging the immersive and interactive features provided by 3D immersive experiences. A 3D desktop application and a novel storyboarding pipeline, which can automatically generate a storyboard including camera details and a textual description of the actions performed in three-dimensional environments, have already been investigated in previous work. The aim was to exploit new technologies to improve existing 3D storytelling approaches, thus providing a software solution for expert and novice storyboarders. This research investigates 3D storyboarding in immersive virtual reality (IVR) to move toward a new storyboarding paradigm. IVR systems provide peculiarities such as body-controlled exploration of the 3D scene and a head-dependant camera view that can extend features of traditional storyboarding tools. The proposed system enables users to set up the virtual stage, adding elements to the scene and exploring the environment as they build it. After that, users can select the available characters or the camera, control them in first person, position them in the scene, and perform actions selecting from a list of options, each paired with a corresponding animation. Relying on the concept of state-machine, the system can automatically generate the list of available actions depending on the context. Finally, the descriptions for each storyboard panel are automatically generated based on the history of activities performed. The proposed application maintains all the functionalities of the desktop version and can be effectively used to create storyboards in immersive virtual environments

    Autonomous agents and avatars in REVERIE’s virtual environment

    Get PDF
    In this paper, we describe the enactment of autonomous agents and avatars in the web-based social collaborative virtual environment of REVERIE that supports natural, human-like behavior, physical interaction and engagement. Represented by avatars, users feel immersed in this virtual world in which they can meet and share experiences as in real life. Like the avatars, autonomous agents that may act in this world are capable of demonstrating human-like non-verbal behavior and facilitate social interaction. We describe how reasoning components of the REVERIE system connect and cooperatively control autonomous agents and avatars representing a user

    Designing and implementing interactive and realistic augmented reality experiences

    Get PDF
    In this paper, we propose an approach for supporting the design and implementation of interactive and realistic Augmented Reality (AR). Despite the advances in AR technology, most software applications still fail to support AR experiences where virtual objects appear as merged into the real setting. To alleviate this situation, we propose to combine the use of model-based AR techniques with the advantages of current game engines to develop AR scenes in which the virtual objects collide, are occluded, project shadows and, in general, are integrated into the augmented environment more realistically. To evaluate the feasibility of the proposed approach, we extended an existing game platform named GREP to enhance it with AR capacities. The realism of the AR experiences produced with the software was assessed in an event in which more than 100 people played two AR games simultaneously.This work is supported by the project CREAx and PACE funded by the Spanish Ministry of Economy, Industry and Competitiveness (TIN2014-56534-R and TIN2016-77690-R)
    corecore