2,025 research outputs found

    Navigating uncharted waters: Designing business models for virtual and augmented reality companies in the medical industry

    Get PDF
    New technologies are at the heart of industry transformation. Virtual and augmented reality companies provide fundamentally new ways of communication, treatment, education, and specialist training within the medical industry. However, business models for new ventures that target the medical industry have received scant attention within academic research. Using a multiple case study approach, we analyze how virtual and augmented reality firms create value for their customers in the medical industry. In all, we have studied eight companies that offer different types of solutions for their target segments. The results of the analysis are four design elements consisting of twelve positions and three design themes that define the similarities and differences between the business models for the companies. We contribute to existing research within the field by analyzing business models of the investigated companies using a design approach, classifying the virtual and augmented reality companies, and analyzing the role of new technology in the development of the medical industry.publishedVersio

    Performance Factors in Neurosurgical Simulation and Augmented Reality Image Guidance

    Get PDF
    Virtual reality surgical simulators have seen widespread adoption in an effort to provide safe, cost-effective and realistic practice of surgical skills. However, the majority of these simulators focus on training low-level technical skills, providing only prototypical surgical cases. For many complex procedures, this approach is deficient in representing anatomical variations that present clinically, failing to challenge users’ higher-level cognitive skills important for navigation and targeting. Surgical simulators offer the means to not only simulate any case conceivable, but to test novel approaches and examine factors that influence performance. Unfortunately, there is a void in the literature surrounding these questions. This thesis was motivated by the need to expand the role of surgical simulators to provide users with clinically relevant scenarios and evaluate human performance in relation to image guidance technologies, patient-specific anatomy, and cognitive abilities. To this end, various tools and methodologies were developed to examine cognitive abilities and knowledge, simulate procedures, and guide complex interventions all within a neurosurgical context. The first chapter provides an introduction to the material. The second chapter describes the development and evaluation of a virtual anatomical training and examination tool. The results suggest that learning occurs and that spatial reasoning ability is an important performance predictor, but subordinate to anatomical knowledge. The third chapter outlines development of automation tools to enable efficient simulation studies and data management. In the fourth chapter, subjects perform abstract targeting tasks on ellipsoid targets with and without augmented reality guidance. While the guidance tool improved accuracy, performance with the tool was strongly tied to target depth estimation – an important consideration for implementation and training with similar guidance tools. In the fifth chapter, neurosurgically experienced subjects were recruited to perform simulated ventriculostomies. Results showed anatomical variations influence performance and could impact outcome. Augmented reality guidance showed no marked improvement in performance, but exhibited a mild learning curve, indicating that additional training may be warranted. The final chapter summarizes the work presented. Our results and novel evaluative methodologies lay the groundwork for further investigation into simulators as versatile research tools to explore performance factors in simulated surgical procedures

    Development of an open access system for remote operation of robotic manipulators

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáExploring the realms of research, training, and learning in the field of robotic systems poses obstacles for institutions lacking the necessary infrastructure. The significant investment required to acquire physical robotic systems often limits access and hinders progress in these areas. While robotic simulation platforms provide a virtual environment for experimentation, the potential of remote robotic environments surpasses this by enabling users to interact with real robotic systems during training and research activities. This way, users, including students and researchers, can engage in a virtual experience that transcends geographical boundaries, connecting them to real-world robotic systems though the Internet. By bridging the gap between virtual and physical worlds, remote environments offer a more practical and immersive experience, and open up new horizons for collaborative research and training. Democratizing access to these technologies means empower educational institutions and research centers to engage in practical and handson learning experiences. However, the implementation of remote robotic environments comes with its own set of technical challenges: communication, security, stability and access. In light of these challenges, a ROS-based system has been developed, providing open access with promising results (low delay and run-time visualization). This system enables remote control of robotic manipulators and has been successfully validated through the remote operation of a real UR3 manipulator.Explorar as áreas de pesquisa, treinamento e aprendizado no campo de sistemas robóticos apresenta obstáculos para instituições que não possuem a infraestrutura necessária. O investimento significativo exigido para adquirir sistemas robóticos físicos muitas vezes limita o acesso e dificulta o progresso nessas áreas. Embora as plataformas de simulação robótica forneçam um ambiente virtual para experimentação, o potencial dos ambientes robóticos remotos vai além disso, permitindo que os usuários interajam com sistemas robóticos reais durante atividades de treinamento e pesquisa. Dessa forma, os usuários, incluindo estudantes e pesquisadores, podem participar de uma experiência virtual que transcende as fronteiras geográficas, conectando-os a sistemas robóticos do mundo real por meio da Internet. Ao estabelecer uma ponte entre os mundos virtual e físico, os ambientes remotos oferecem uma experiência mais prática e imersiva, abrindo novos horizontes para a pesquisa colaborativa e o treinamento. Democratizar o acesso a essas tecnologias significa capacitar instituições educacionais e centros de pesquisa a se envolverem em experiências práticas e de aprendizado prático. No entanto, a implementação de ambientes robóticos remotos traz consigo um conjunto próprio de desafios técnicos: comunicação, segurança, estabilidade e acesso. Diante desses desafios, foi desenvolvida uma plataforma baseada em ROS, oferecendo acesso aberto com resultados promissores (baixo delay e visualização em run-time). Essa plataforma possibilita o controle remoto de manipuladores robóticos e foi validada com sucesso por meio da operação remota de um manipulador UR3 real

    The influences of gamification on user experience in the healthcare sector

    Get PDF
    Abstract. Gamification is a considerably emerging trend focusing on the application of game mechanics to a nongame context. The objective of gamification implication in serious settings is to form the positive outcomes from the patients. While education and business have been taken advantages of gamification, the digital health domain just started the journey with this prevailing trend. That is why, there is an increasing demand for scientific research on the gamification in healthcare, especially the user experience under the gamified healthcare solution from the company perspective. With this inspiration, the study is conducted aiming at exploring the user experience under the impact of gamification in the healthcare context. Study indicates that it is the affordances, which are also known as game elements that stimulate various psychological and behavioural experience for the users. The combination of the achievement-oriented, social-oriented and immersion-oriented affordances in the gamified healthcare solution triggers the various psychological and behavioural experience. These experiences are examined under three perspectives which are stimulation, interaction and sense-making. Through the stimulation lens, the psychological experiences are favourably formed and dominant the behavioural experience. While, the interaction lens indicates the dominance of the behavioural experience, especially the performance-related outcomes. The sense-making view shows the actor-related behavioural experience outweighs of the other outcomes. The exploratory qualitative research and the semi-structured interviews are utilised to investigate the game affordances in the gamified solutions and the user experience from the gamified solution providers angles. The study expectedly contributes to the literature’ body of gamification by confirming the conceptualisation of the gamification and the formation of the user experience. The empirical implications are for the gamified healthcare solution design regarding the affordance combination and the utilisation of the insights from both patients and game players

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Mixed Reality system to study deformable objects: Breast Cancer application

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2020-2021. Directors: Eduardo Soudah i Óscar de Coss. Tutor: Aida NiñerolaA significant amount of women who go through a breast cancer conservative surgery to treat early stage breast cancer undergo a repeat surgery due to concerns that residual tumor was left behind. To avoid this, tumor localization is needed to assist the surgeon in order to determine tumor extent and also, it is critical to account for tissue deformations. For these reasons, new navigation systems, like the one proposed on this project, are emerging to cover those needs. This project focuses on the use of a Mixed Reality system to improve the accuracy in placing the static hologram of the tumor and, to implement a dynamical hologram when deformation takes place. In order to do so, two different molds with objects inside have been manufactured. Next, two different approaches were considered, a mathematical approach to create a 3D CAD model of the molds and a medical approach, which consisted in performing a CT and then, segment the images. The models were post-processed and imported to the HoloLens head-mounted display. The system was tested on the molds and on a breast phantom provided by the Hospital Clinic. The results obtained were encouraging and although some things need to be improved, this exciting new use for Augmented Reality has the potential to improve the lives of many patients
    corecore