230 research outputs found

    Volume ray casting techniques and applications using general purpose computations on graphics processing units

    Get PDF
    Traditional 3D computer graphics focus on rendering the exterior of objects. Volume rendering is a technique used to visualize information corresponding to the interior of an object, commonly used in medical imaging and other fields. Visualization of such data may be accomplished by ray casting; an embarrassingly parallel algorithm also commonly used in ray tracing. There has been growing interest in performing general purpose computations on graphics processing units (GPGPU), which are capable exploiting parallel applications and yielding far greater performance than sequential implementations on CPUs. Modern GPUs allow for rapid acceleration of volume rendering applications, offering affordable high performance visualization systems. This thesis explores volume ray casting performance and visual quality enhancements using the NVIDIA CUDA platform, and demonstrates how high quality volume renderings can be produced with interactive and real time frame rates on modern commodity graphics hardware. A number of techniques are employed in this effort, including early ray termination, super sampling and texture filtering. In a performance comparison of a sequential versus CUDA implementation on high-end hardware, the latter is capable of rendering 60 frames per second with an impressive price-performance ratio heavily favoring GPUs. A number of unique volume rendering applications are explored including multiple volume rendering capable of arbitrary placement and rigid volume registration, hypertexturing and stereoscopic anaglyphs, each greatly enhanced by the real time interaction of volume data. The techniques and applications discussed in this thesis may prove to be invaluable tools in fields such as medical and molecular imaging, flow and scientific visualization, engineering drawing and many others

    Visualizing Large Procedural Volumetric Terrains Using Nested Clip-Boxes

    Get PDF

    Surface Shape Perception in Volumetric Stereo Displays

    Get PDF
    In complex volume visualization applications, understanding the displayed objects and their spatial relationships is challenging for several reasons. One of the most important obstacles is that these objects can be translucent and can overlap spatially, making it difficult to understand their spatial structures. However, in many applications, for example medical visualization, it is crucial to have an accurate understanding of the spatial relationships among objects. The addition of visual cues has the potential to help human perception in these visualization tasks. Descriptive line elements, in particular, have been found to be effective in conveying shape information in surface-based graphics as they sparsely cover a geometrical surface, consistently following the geometry. We present two approaches to apply such line elements to a volume rendering process and to verify their effectiveness in volume-based graphics. This thesis reviews our progress to date in this area and discusses its effects and limitations. Specifically, it examines the volume renderer implementation that formed the foundation of this research, the design of the pilot study conducted to investigate the effectiveness of this technique, the results obtained. It further discusses improvements designed to address the issues revealed by the statistical analysis. The improved approach is able to handle visualization targets with general shapes, thus making it more appropriate to real visualization applications involving complex objects

    Contributions to virtual reality

    Get PDF
    153 p.The thesis contributes in three Virtual Reality areas: ¿ Visual perception: a calibration algorithm is proposed to estimate stereo projection parameters in head-mounted displays, so that correct shapes and distances can be perceived, and calibration and control procedures are proposed to obtain desired accommodation stimuli at different virtual distances.¿ Immersive scenarios: the thesis analyzes several use cases demanding varying degrees of immersion and special, innovative visualization solutions are proposed to fulfil their requirements. Contributions focus on machinery simulators, weather radar volumetric visualization and manual arc welding simulation.¿ Ubiquitous visualization: contributions are presented to scenarios where users access interactive 3D applications remotely. The thesis follows the evolution of Web3D standards and technologies to propose original visualization solutions for volume rendering of weather radar data, e-learning on energy efficiency, virtual e-commerce and visual product configurators

    GPGPU computation and visualization of three-dimensional cellular automata

    Get PDF
    This paper presents a general-purpose simulation approach integrating a set of technological developments and algorithmic methods in cellular automata (CA) domain. The approach provides a general-purpose computing on graphics processor units (GPGPU) implementation for computing and multiple rendering of any direct-neighbor three-dimensional (3D) CA. The major contributions of this paper are: the CA processing and the visualization of large 3D matrices computed in real time; the proposal of an original method to encode and transmit large CA functions to the graphics processor units in real time; and clarification of the notion of top-down and bottom-up approaches to CA that non-CA experts often confuse. Additionally a practical technique to simplify the finding of CA functions is implemented using a 3D symmetric configuration on an interactive user interface with simultaneous inside and surface visualizations. The interactive user interface allows for testing the system with different project ideas and serves as a test bed for performance evaluation. To illustrate the flexibility of the proposed method, visual outputs from diverse areas are demonstrated. Computational performance data are also provided to demonstrate the method's efficiency. Results indicate that when large matrices are processed, computations using GPU are two to three hundred times faster than the identical algorithms using CP

    Virtual reality as an educational tool in interior architecture

    Get PDF
    Ankara : The Department of Interior Architecture and Environmental Design and the Institute of Fine Arts of Bilkent Univ., 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references.This thesis discusses the use of virtual reality technology as an educational tool in interior architectural design. As a result of this discussion, it is proposed that virtual reality can be of use in aiding three-dimensional design and visualization, and may speed up the design process. It may also be of help in getting the designers/students more involved in their design projects. Virtual reality can enhance the capacity of designers to design in three dimensions. The virtual reality environment used in designing should be capable of aiding both the design and the presentation process. The tradeoffs of the technology, newly emerging trends and future directions in virtual reality are discussed.AktaÅŸ, OrkunM.S

    Stereoscopic bimanual interaction for 3D visualization

    Get PDF
    Virtual Environments (VE) are being widely used in various research fields for several decades such as 3D visualization, education, training and games. VEs have the potential to enhance the visualization and act as a general medium for human-computer interaction (HCI). However, limited research has evaluated virtual reality (VR) display technologies, monocular and binocular depth cues, for human depth perception of volumetric (non-polygonal) datasets. In addition, a lack of standardization of three-dimensional (3D) user interfaces (UI) makes it challenging to interact with many VE systems. To address these issues, this dissertation focuses on evaluation of effects of stereoscopic and head-coupled displays on depth judgment of volumetric dataset. It also focuses on evaluation of a two-handed view manipulation techniques which support simultaneous 7 degree-of-freedom (DOF) navigation (x,y,z + yaw,pitch,roll + scale) in a multi-scale virtual environment (MSVE). Furthermore, this dissertation evaluates auto-adjustment of stereo view parameters techniques for stereoscopic fusion problems in a MSVE. Next, this dissertation presents a bimanual, hybrid user interface which combines traditional tracking devices with computer-vision based "natural" 3D inputs for multi-dimensional visualization in a semi-immersive desktop VR system. In conclusion, this dissertation provides a guideline for research design for evaluating UI and interaction techniques

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results
    • …
    corecore