9,682 research outputs found

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Design synthesis and shape generation

    Get PDF
    If we are to capitalise on the potential that a design approach might bring to innovation in business and society, we need to build a better understanding of the evolving skill-sets that designers will need and the contexts within which design might operate. This demands more discourse between those involved in cutting edge practice, the researchers who help to uncover principles, codify knowledge and create theories and the educators who are nurturing future design talent. This book promotes such a discourse by reporting on the work of twenty research teams who explored different facets of future design activity as part of Phase 2 of the UK's research council supported Designing for the 21st Century Research Initiative. Each of these contributions describes the origins of the project, the research team and their project aims, the research methods used and the new knowledge and understanding generated. Editor and Initiative Director, Professor Tom Inns, provides an introductory chapter that suggests ways the reader might navigate these viewpoints. This chapter concludes with an overview of the key lessons that might be learnt from this collection of design research activity

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Interpretation of overtracing freehand sketching for geometric shapes

    Get PDF
    This paper presents a novel method for interpreting overtracing freehand sketch. The overtracing strokes are interpreted as sketch content and are used to generate 2D geometric primitives. The approach consists of four stages: stroke classification, strokes grouping and fitting, 2D tidy-up with endpoint clustering and parallelism correction, and in-context interpretation. Strokes are first classified into lines and curves by a linearity test. It is followed by an innovative strokes grouping process that handles lines and curves separately. The grouped strokes are fitted with 2D geometry and further tidied-up with endpoint clustering and parallelism correction. Finally, the in-context interpretation is applied to detect incorrect stroke interpretation based on geometry constraints and to suggest a most plausible correction based on the overall sketch context. The interpretation ensures sketched strokes to be interpreted into meaningful output. The interface overcomes the limitation where only a single line drawing can be sketched out as in most existing sketching programs, meanwhile is more intuitive to the user
    corecore