5,076 research outputs found

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    A Novel Approach for Shadow Detection and Removal from Image

    Get PDF
    Image processing has been one region of studies that draws the interest of extensive form of researchers. Surveillance structures are in big demand specially, for their packages in public areas, consisting of airports, stations, subways, front to buildings and mass events. Shadow occurs while objects consist of light from light source. Shadows offer wealthy information about the item shapes as well as light orientations. Shadow in picture reduces the reliability of many computer imaginative and prescient algorithms. Shadow regularly degrades the visual exceptional of an image. Shadow removal in an image is pre-processing step for computer imaginative and prescient algorithm and image enhancement. Shadow detection and removal in numerous actual lifestyles situations consisting of surveillance device and laptop vision machine remained a hard project. Shadow in visitors surveillance system might also misclassify the actual item, lowering the gadget overall performance

    Efficient From-Point Visibility for Global Illumination in Virtual Scenes with Participating Media

    Get PDF
    Sichtbarkeitsbestimmung ist einer der fundamentalen Bausteine fotorealistischer Bildsynthese. Da die Berechnung der Sichtbarkeit allerdings äußerst kostspielig zu berechnen ist, wird nahezu die gesamte Berechnungszeit darauf verwendet. In dieser Arbeit stellen wir neue Methoden zur Speicherung, Berechnung und Approximation von Sichtbarkeit in Szenen mit streuenden Medien vor, die die Berechnung erheblich beschleunigen, dabei trotzdem qualitativ hochwertige und artefaktfreie Ergebnisse liefern

    Reconhecimento automático de moedas medievais usando visão por computador

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe use of computer vision for identification and recognition of coins is well studied and of renowned interest. However the focus of research has consistently been on modern coins and the used algorithms present quite disappointing results when applied to ancient coins. This discrepancy is explained by the nature of ancient coins that are manually minted, having plenty variances, failures, ripples and centuries of degradation which further deform the characteristic patterns, making their identification a hard task even for humans. Another noteworthy factor in almost all similar studies is the controlled environments and uniform illumination of all images of the datasets. Though it makes sense to focus on the more problematic variables, this is an impossible premise to find outside the researchers’ laboratory, therefore a problematic that must be approached. This dissertation focuses on medieval and ancient coin recognition in uncontrolled “real world” images, thus trying to pave way to the use of vast repositories of coin images all over the internet that could be used to make our algorithms more robust. The first part of the dissertation proposes a fast and automatic method to segment ancient coins over complex backgrounds using a Histogram Backprojection approach combined with edge detection methods. Results are compared against an automation of GrabCut algorithm. The proposed method achieves a Good or Acceptable rate on 76% of the images, taking an average of 0.29s per image, against 49% in 19.58s for GrabCut. Although this work is oriented to ancient coin segmentation, the method can also be used in other contexts presenting thin objects with uniform colors. In the second part, several state of the art machine learning algorithms are compared in the search for the most promising approach to classify these challenging coins. The best results are achieved using dense SIFT descriptors organized into Bags of Visual Words, and using Support Vector Machine or Naïve Bayes as machine learning strategies.O uso de visão por computador para identificação e reconhecimento de moedas é bastante estudado e de reconhecido interesse. No entanto o foco da investigação tem sido sistematicamente sobre as moedas modernas e os algoritmos usados apresentam resultados bastante desapontantes quando aplicados a moedas antigas. Esta discrepância é justificada pela natureza das moedas antigas que, sendo cunhadas à mão, apresentam bastantes variações, falhas e séculos de degradação que deformam os padrões característicos, tornando a sua identificação dificil mesmo para o ser humano. Adicionalmente, a quase totalidade dos estudos usa ambientes controlados e iluminação uniformizada entre todas as imagens dos datasets. Embora faça sentido focar-se nas variáveis mais problemáticas, esta é uma premissa impossível de encontrar fora do laboratório do investigador e portanto uma problemática que tem que ser estudada. Esta dissertação foca-se no reconhecimento de moedas medievais e clássicas em imagens não controladas, tentando assim abrir caminho ao uso de vastos repositórios de imagens de moedas disponíveis na internet, que poderiam ser usados para tornar os nossos algoritmos mais robustos. Na primeira parte é proposto um método rápido e automático para segmentar moedas antigas sobre fundos complexos, numa abordagem que envolve Histogram Backprojection combinado com deteção de arestas. Os resultados são comparados com uma automação do algoritmo GrabCut. O método proposto obtém uma classificação de Bom ou Aceitável em 76% das imagens, demorando uma média de 0.29s por imagem, contra 49% em 19,58s do GrabCut. Não obstante o foco em segmentação de moedas antigas, este método pode ser usado noutros contextos que incluam objetos planos de cor uniforme. Na segunda parte, o estado da arte de Machine Learning é testado e comparado em busca da abordagem mais promissora para classificar estas moedas. Os melhores resultados são alcançados usando descritores dense SIFT, organizados em Bags of Visual Words e usando Support Vector Machine ou Naive Bayes como estratégias de machine learning
    corecore