2,138 research outputs found

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Design of the software development and verification system (SWDVS) for shuttle NASA study task 35

    Get PDF
    An overview of the Software Development and Verification System (SWDVS) for the space shuttle is presented. The design considerations, goals, assumptions, and major features of the design are examined. A scenario that shows three persons involved in flight software development using the SWDVS in response to a program change request is developed. The SWDVS is described from the standpoint of different groups of people with different responsibilities in the shuttle program to show the functional requirements that influenced the SWDVS design. The software elements of the SWDVS that satisfy the requirements of the different groups are identified

    Evolutionary Programming with the Aid of A Programmers' Apprentice

    Get PDF
    This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the Office of Naval Research of the Department of Defense under Contract N00014-75-C-0522.MIT Artificial Intelligence Laboratory Department of Defense Office of Naval Researc

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    Debugging Maude programs via runtime assertion checking and trace slicing

    Full text link
    [EN] This is the author’s version of a work that was accepted for publication in . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Logical and Algebraic Methods in Programming, [VOL 85, ISSUE 5, (2016)] DOI 10.1016/j.jlamp.2016.03.001.In this paper we propose a dynamic analysis methodology for improving the diagnosis of erroneous Maude programs. The key idea is to combine runtime checking and dynamic trace slicing for automatically catching errors at runtime while reducing the size and complexity of the erroneous traces to be analyzed (i.e., those leading to states failing to satisfy some of the assertions). First, we formalize a technique that is aimed at automatically detecting deviations of the program behavior (symptoms) with respect to two types of user-defined assertions: functional assertions and system assertions. The proposed dynamic checking is provably sound in the sense that all errors flagged are definitely violations of the specifications. Then, upon eventual assertion violations we generate accurate trace slices that help identify the cause of the error. Our methodology is based on (i) a logical notation for specifying assertions that are imposed on execution runs; (ii) a runtime checking technique that dynamically tests the assertions; and (iii) a mechanism based on (equational) least general generalization that automatically derives accurate criteria for slicing from falsified assertions. Finally, we report on an implementation of the proposed technique in the assertion-based, dynamic analyzer ABETS and show how the forward and backward tracking of asserted program properties leads to a thorough trace analysis algorithm that can be used for program diagnosis and debugging. © 2016 Elsevier Inc. All rights reserved.This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN2015-69175-C4-1-R and TIN2013-45732-C4-1-P, and by Generalitat Valenciana Ref. PROMETEOII/2015/013. F. Frechina was supported by FPU-ME grant AP2010-5681, and J. Sapiña was supported by FPI-UPV grant SP2013-0083 and mobility grant VIIT-3946.Alpuente Frasnedo, M.; Ballis, D.; Frechina, F.; Sapiña-Sanchis, J. (2016). Debugging Maude programs via runtime assertion checking and trace slicing. Journal of Logical and Algebraic Methods in Programming. 85(5):707-736. https://doi.org/10.1016/j.jlamp.2016.03.001S70773685

    Vérification dynamique ciblée et interactive de programmes grâce à une architecture modulaire

    Get PDF
    Le cycle de développement d’une application contient plusieurs phases, de l’écriture au soutien technique suivant la publication. Une phase particulièrement importante est la vérification du programme. Il s’agit de vérifier que le programme produit répond à la spécification au sens large, c’est à dire qu’il présente le comportement prévu sans bogue, quel que soit le scénario et les entrées présentées. De nombreux outils sont disponibles pour assister l’utilisateur dans cette tâche. Parmi ceux-ci, on trouve les outils de vérification formelle qui permettent de modéliser le déroulement d’un programme et d’en prouver mathématiquement la validité. Les analyses statiques peinent cependant à vérifier des programmes complexes, et une autre famille d’outils est souvent nécessaire. Ce sont les outils dynamiques, qui vérifient l’intégrité du programme pendant son exécution. Dans ce domaine, on trouve surtout des outils spécialisés et efficaces, mais peu flexibles. En effet, en l’absence d’une structure commune, beaucoup d’outils réécrivent intégralement toutes les fonctionnalités de base, et ce coût de développement fait qu’ils se limitent souvent aux fonctionnalités strictement nécessaires. Peu d’outils proposent ainsi une instrumentation dynamique ou une interface graphique.----------ABSTRACT: The development cycle of an application covers multiple different stages, from code writing to technical support. One crucial phase is program verification and debugging. During this stage, the developers need to make sure that the program they deliver corresponds to both its explicit and implicit specification, meaning that it has to behave correctly and without any bug whatever input is given to it. Multiple tools exist to assist the developers. Among them, formal verification is a method which proves mathematically the validity of a program by modeling its behavior. However, this type of static analysis struggle to analyse properly complex programs, and developers often also rely on dynamic tools, which check the integrity of a running program. A large number of specialized tools exist in that domain, but they often go for a lean approach, with little flexibility and adaptability. This is partly due to the lack of a common framework for high performance runtime verification tools. Most tools have to reprogram every functionality from the ground up, which means they often limit their scope to what is strictly necessary to reduce development costs. Features such as dynamic instrumentation or even a graphical user interface are seldom available. As part of this research project, we propose a solution to this problem, taking example on the recent development in integrated development environments. The goal is to provide modularity in order to share underlying features as much as possible. This removes the need for rewriting those basic features and enables developers to focus on more advanced tasks, which in turn produces better verification tools

    The OpenModelica integrated environment for modeling, simulation, and model-based development

    Get PDF
    OpenModelica is a unique large-scale integrated open-source Modelica- and FMI-based modeling, simulation, optimization, model-based analysis and development environment. Moreover, the OpenModelica environment provides a number of facilities such as debugging; optimization; visualization and 3D animation; web-based model editing and simulation; scripting from Modelica, Python, Julia, and Matlab; efficient simulation and co-simulation of FMI-based models; compilation for embedded systems; Modelica- UML integration; requirement verification; and generation of parallel code for multi-core architectures. The environment is based on the equation-based object-oriented Modelica language and currently uses the MetaModelica extended version of Modelica for its model compiler implementation. This overview paper gives an up-to-date description of the capabilities of the system, short overviews of used open source symbolic and numeric algorithms with pointers to published literature, tool integration aspects, some lessons learned, and the main vision behind its development.Fil: Fritzson, Peter. Linköping University; SueciaFil: Pop, Adrian. Linköping University; SueciaFil: Abdelhak, Karim. Fachhochschule Bielefeld; AlemaniaFil: Asghar, Adeel. Linköping University; SueciaFil: Bachmann, Bernhard. Fachhochschule Bielefeld; AlemaniaFil: Braun, Willi. Fachhochschule Bielefeld; AlemaniaFil: Bouskela, Daniel. Electricité de France; FranciaFil: Braun, Robert. Linköping University; SueciaFil: Buffoni, Lena. Linköping University; SueciaFil: Casella, Francesco. Politecnico di Milano; ItaliaFil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Franke, Rüdiger. Abb Group; AlemaniaFil: Fritzson, Dag. Linköping University; SueciaFil: Gebremedhin, Mahder. Linköping University; SueciaFil: Heuermann, Andreas. Linköping University; SueciaFil: Lie, Bernt. University of South-Eastern Norway; NoruegaFil: Mengist, Alachew. Linköping University; SueciaFil: Mikelsons, Lars. Linköping University; SueciaFil: Moudgalya, Kannan. Indian Institute Of Technology Bombay; IndiaFil: Ochel, Lennart. Linköping University; SueciaFil: Palanisamy, Arunkumar. Linköping University; SueciaFil: Ruge, Vitalij. Fachhochschule Bielefeld; AlemaniaFil: Schamai, Wladimir. Danfoss Power Solutions GmbH & Co; AlemaniaFil: Sjolund, Martin. Linköping University; SueciaFil: Thiele, Bernhard. Linköping University; SueciaFil: Tinnerholm, John. Linköping University; SueciaFil: Ostlund, Per. Linköping University; Sueci

    Rewriting Logic Techniques for Program Analysis and Optimization

    Full text link
    Esta tesis propone una metodología de análisis dinámico que mejora el diagnóstico de programas erróneos escritos en el lenguaje Maude. La idea clave es combinar técnicas de verificación de aserciones en tiempo de ejecución con la fragmentación dinámica de trazas de ejecución para detectar automáticamente errores en tiempo de ejecución, al tiempo que se reduce el tamaño y la complejidad de las trazas a analizar. En el caso de violarse una aserción, se infiere automáticamente el criterio de fragmentación, lo que facilita al usuario identificar rápidamente la fuente del error. En primer lugar, la tesis formaliza una técnica destinada a detectar automáticamente eventuales desviaciones del comportamiento deseado del programa (síntomas de error). Esta técnica soporta dos tipos de aserciones definidas por el usuario: aserciones funcionales (que restringen llamadas a funciones deterministas) y aserciones de sistema (que especifican los invariantes de estado del sistema). La técnica de verificación dinámica propuesta es demostrablemente correcta en el sentido de que todos los errores señalados definitivamente delatan la violación de las aserciones. Tras eventuales violaciones de aserciones, se generan automáticamente trazas fragmentadas (es decir, trazas simplificadas pero igualmente precisas) que ayudan a identificar la causa del error. Además, la técnica también sugiere una posible reparación para las reglas implicadas en la generación de los estados erróneos. La metodología propuesta se basa en (i) una notación lógica para especificar las aserciones que se imponen a la ejecución; (ii) una técnica de verificación aplicable en tiempo de ejecución que comprueba dinámicamente las aserciones; y (iii) un mecanismo basado en la generalización (ecuacional) menos general que automáticamente obtiene criterios precisos para fragmentar trazas de ejecución a partir de aserciones falsificadas. Por último, se presenta una implementación de la técnica propuesta en la herramienta de análisis dinámico basado en aserciones ABETS, que muestra cómo es posible combinar el trazado de las propiedades asertadas del programa para obtener un algoritmo preciso de análisis de trazas que resulta útil para el diagnóstico y la depuración de programas.This thesis proposes a dynamic analysis methodology for improving the diagnosis of erroneous Maude programs. The key idea is to combine runtime assertion checking and dynamic trace slicing for automatically catching errors at runtime while reducing the size and complexity of the erroneous traces to be analyzed (i.e., those leading to states that fail to satisfy the assertions). In the event of an assertion violation, the slicing criterion is automatically inferred, which facilitates the user to rapidly pinpoint the source of the error. First, a technique is formalized that aims at automatically detecting anomalous deviations of the intended program behavior (error symptoms) by using assertions that are checked at runtime. This technique supports two types of user-defined assertions: functional assertions (which constrain deterministic function calls) and system assertions (which specify system state invariants). The proposed dynamic checking is provably sound in the sense that all errors flagged definitely signal a violation of the specifications. Then, upon eventual assertion violations, accurate trace slices (i.e., simplified yet precise execution traces) are generated automatically, which help identify the cause of the error. Moreover, the technique also suggests a possible repair for the rules involved in the generation of the erroneous states. The proposed methodology is based on (i) a logical notation for specifying assertions that are imposed on execution runs; (ii) a runtime checking technique that dynamically tests the assertions; and (iii) a mechanism based on (equational) least general generalization that automatically derives accurate criteria for slicing from falsified assertions. Finally, an implementation of the proposed technique is presented in the assertion-based, dynamic analyzer ABETS, which shows how the forward and backward tracking of asserted program properties leads to a thorough trace analysis algorithm that can be used for program diagnosis and debugging.Esta tesi proposa una metodologia d'anàlisi dinàmica que millora el diagnòstic de programes erronis escrits en el llenguatge Maude. La idea clau és combinar tècniques de verificació d'assercions en temps d'execució amb la fragmentació dinàmica de traces d'execució per a detectar automàticament errors en temps d'execució, alhora que es reduïx la grandària i la complexitat de les traces a analitzar. En el cas de violar-se una asserció, s'inferix automàticament el criteri de fragmentació, la qual cosa facilita a l'usuari identificar ràpidament la font de l'error. En primer lloc, la tesi formalitza una tècnica destinada a detectar automàticament eventuals desviacions del comportament desitjat del programa (símptomes d'error). Esta tècnica suporta dos tipus d'assercions definides per l'usuari: assercions funcionals (que restringixen crides a funcions deterministes) i assercions de sistema (que especifiquen els invariants d'estat del sistema). La tècnica de verificació dinàmica proposta és demostrablement correcta en el sentit que tots els errors assenyalats definitivament delaten la violació de les assercions. Davant eventuals violacions d'assercions, es generen automàticament traces fragmentades (és a dir, traces simplificades però igualment precises) que ajuden a identificar la causa de l'error. A més, la tècnica també suggerix una possible reparació de les regles implicades en la generació dels estats erronis. La metodologia proposada es basa en (i) una notació lògica per a especificar les assercions que s'imposen a l'execució; (ii) una tècnica de verificació aplicable en temps d'execució que comprova dinàmicament les assercions; i (iii) un mecanisme basat en la generalització (ecuacional) menys general que automàticament obté criteris precisos per a fragmentar traces d'execució a partir d'assercions falsificades. Finalment, es presenta una implementació de la tècnica proposta en la ferramenta d'anàlisi dinàmica basat en assercions ABETS, que mostra com és possible combinar el traçat cap avant i cap arrere de les propietats assertades del programa per a obtindre un algoritme precís d'anàlisi de traces que resulta útil per al diagnòstic i la depuració de programes.Sapiña Sanchis, J. (2017). Rewriting Logic Techniques for Program Analysis and Optimization [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/94044TESI
    corecore