1,059 research outputs found

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    What have we learnt from the challenges of (semi-) automated requirements traceability? A discussion on blockchain applicability.

    Get PDF
    Over the last 3 decades, researchers have attempted to shed light into the requirements traceability problem by introducing tracing tools, techniques, and methods with the vision of achieving ubiquitous traceability. Despite the technological advances, requirements traceability remains problematic for researchers and practitioners. This study aims to identify and investigate the main challenges in implementing (semi-)automated requirements traceability, as reported in the recent literature. A systematic literature review was carried out based on the guidelines for systematic literature reviews in software engineering, proposed by Kitchenham. We retrieved 4530 studies by searching five major bibliographic databases and selected 70 primary studies. These studies were analysed and classified according to the challenges they present and/or address. Twenty-one challenges were identified and were classified into five categories. Findings reveal that the most frequent challenges are technological challenges, in particular, low accuracy of traceability recovery methods. Findings also suggest that future research efforts should be devoted to the human facet of tracing, to explore traceability practices in organisational settings, and to develop traceability approaches that support agile and DevOps practices. Finally, it is recommended that researchers leverage blockchain technology as a suitable technical solution to ensure the trustworthiness of traceability information in interorganisational software projects.publishedVersio

    Interaction-Based Creation and Maintenance of Continuously Usable Trace Links

    Get PDF
    Traceability is a major concern for all software engineering artefacts. The core of traceability are trace links between the artefacts. Out of the links between all kinds of artefacts, trace links between requirements and source code are fundamental, since they enable the connection between the user point of view of a requirement and its actual implementation. Trace links are important for many software engineering tasks such as maintenance, program comprehension, verification, etc. Furthermore, the direct availability of trace links during a project improves the performance of developers. The manual creation of trace links is too time-consuming to be practical. Thus, traceability research has a strong focus on automatic trace link creation. The most common automatic trace link creation methods use information retrieval techniques to measure the textual similarity between artefacts. The results of the textual similarity measurement is then used to judge the creation of links between artefacts. The application of such information retrieval techniques results in a lot of wrong link candidates and requires further expert knowledge to make the automatically created links usable, insomuch as it is necessary to manually vet the link candidates. This fact prevents the usage of information retrieval techniques to create trace links continuously and directly provide them to developers during a project. Thus, this thesis addresses the problem of continuously providing trace links of a good quality to developers during a project and to maintain these links along with changing artefacts. To achieve this, a novel automatic trace link creation approach called Interaction Log Recording-based Trace Link Creation (ILog) has been designed and evaluated. ILog utilizes the interactions of developers with source code while implementing requirements. In addition, ILog uses the common development convention to provide issues' identifiers in a commit message, to assign recorded interactions to requirements. Thus ILog avoids additional manual efforts from the developers for link creation. ILog has been implemented in a set of tools. The tools enable the recording of interactions in different integrated development environments and the subsequent creation of trace links. Trace link are created between source code files which have been touched by interactions and the current requirement which is being worked on. The trace links which are initially created in this way are further improved by utilizing interaction data such as interaction duration, frequency, type, etc. and source code structure, i.e. source code references between source code files involved in trace links. ILog's link improvement removes potentially wrong links and subsequently adds further correct links. ILog was evaluated in three empirical studies using gold standards created by experts. One of the studies used data from an open source project. In the two other studies, student projects involving a real world customer were used. The results of the studies showed that ILog can create trace links with perfect precision and good recall, which enables the direct usage of the links. The studies also showed that the ILog approach has better precision and recall than other automatic trace link creation approaches, such as information retrieval. To identify trace link maintenance capabilities suitable for the integration in ILog, a systematic literature review about trace link maintenance was performed. In the systematic literature review the trace link maintenance approaches which were found are discussed on the basis of a standardized trace link maintenance process. Furthermore, the extension of ILog with suitable trace link maintenance capabilities from the approaches found is illustrated

    Recovering Transitive Traceability Links among Software Artifacts

    Get PDF
    Abstract-Although many methods have been suggested to automatically recover traceability links in software development, they do not cover all link combinations (e.g., links between the source code and test cases) because specific documents or artifact features (e.g., log documents and structures of source code) are used. In this paper, we propose a method called the Connecting Links Method (CLM) to recover transitive traceability links between two artifacts using a third artifact. Because CLM uses a different artifact as a document, it can be applied to kinds of various data. Basically, CLM recovers traceability links using the Vector Space Model (VSM) in Information Retrieval (IR) methods. For example, by connecting links between A and B and between B and C, CLM retrieves the link between A and C transitively. In this way, CLM can recover transitive traceability links when a suggested method cannot. Here we demonstrate that CLM can effectively recover links that VSM cannot using Open Source Software

    Information Retrieval based requirement traceability recovery approaches- A systematic literature review

    Get PDF
    Abstract: The term traceability is an important concept regarding software development. It enables software engineers to trace requirements from their origin to fulfillment. Maintaining traceability manually is a time consuming and expensive job. Information retrieval methods provide a mean of automation for requirement traceability. A visible number of IR based traceability techniques have been proposed in the literature, but the adoption of these techniques in the industry is limited. In this paper, we examine the information retrieval-based traceability recovery approaches through systematic literature review. We presented a synthesis of these techniques. We also identified challenges that are potentially limiting the adoption of IR based traceability recovery approaches. We conclude that term mismatch is a major barrier faced by IR based approaches. We also did classify the approaches that are attempting to solve the term mismatch problem

    Categorizing Non-Functional Requirements Using a Hierarchy in UML.

    Get PDF
    Non-functional requirements (NFRs) are a subset of requirements, the means by which software system developers and clients communicate about the functionality of the system to be built. This paper has three main parts: first, an overview of how non-functional requirements relate to software engineering is given, along with a survey of NFRs in the software engineering literature. Second, a collection of 161 NFRs is diagrammed using the Unified Modelling Language, forming a tool with which developers may more easily identify and write additional NFRs. Third, a lesson plan is presented, a learning module intended for an undergraduate software engineering curriculum. The results of presenting this learning module to a class in Spring, 2003 is presented

    Quality aspects of software product supply and support using the Internet

    Get PDF
    A dissertation submitted to the Faculty of Engineering , University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, 1998.This project explores the use of the Internet to supply and support software products within a quality management system. The Software Engineering Applications Laboratory (SEAL) at the University of the Witwatersrand is in the process of developing various software products that will be commercially distributed in the near future. The SEAL has chosen to use the Internet to supply and support these products. A system has been developed for this task and has been named the Internet System for the Supply and Support of Software (IS4). The SEAL is committed to developing and supplying software within a quality management system. Consequently an investigation was undertaken into the quality characteristics and requirements based on the ISO 9001 standard for quality assurance and the ISO/lEC JTG1/SC7 software engineering standards. The investigation focused on quality requirements for processes related to supplying and supporting software as well as on the quality characteristics of the IS4 and the IS4 development process. These quality concerns have been incorporated into the SEAL's quality management system, the design and development of the IS4 and the development process for SEAL products. Major technical issues that have influenced the design of the IS4 have been the control of the supply and licensing of the supplied products and the transaction processing of the on-line sales. To control the supply and licenSing of the supplied products, various issues such as unlock keys, Internet based registration, controlled access and hardware control have been investigated. The advantages and disadvantages of each have been investigated and a suitable lmplernentat'on has been used in the IS4. To process the on-line transactions the IS4 will be developed to be compliant with the recently released 'Secure Electronic Transactions' (SET) standard. The project has been managed in accordance with the SEAL's Quality Management System (QMS) which is ISO 9001 compliant. The system contains a Shopper Interface for purchasing of SEAL products and a Manager Interface for administration of the system. The Microsoft BackOffice® set of software has formed the foundation on which the system has been developed. One of the focuses of the project was maintainability of the IS4. Documentation and procedures have been developed to aid in administration and perfective maintenance in the future

    Software maintenance: redocumentation of existing Cobol systems using hypertext technology

    Get PDF
    One of the major problems associated with the maintenance of existing software systems is their lack of documentation. This can make very large, poorly structured programs very difficult to maintain. Nearly all traditional documentation tools are either designed for use in the development stage of the software lifecycle or are report generators such as cross reference generators. The problems of lack of documentation are compounded when applied to third party software maintenance as the staffs are often initially unfamiliar with the code they are maintaining. This thesis describes these problems in detail and evaluates the feasibility of a tool to help with redocumentation based on current hypertext technology

    Using active database for management of requirements change

    Get PDF
    Software system development projects experience numerous changes during their life cycle. These changes are inevitable and driven by several factors including changes to a system\u27s environment and changes of customers\u27 needs. Requirements change has been reported as the major contributing factor for poor quality or even failures of software projects. This indicates that management of requirements change still remains a challenging problem in software development. A critical part of the requirements change management process is impact analysis. To carry out impact assessment, traceability information is needed. Over two decades, requirements traceability has been an important research topic in software research, but the actual practice of maintaining traceability information is not always entirely successful. In this thesis, a new traceability technique was presented for mapping dynamic behaviors of requirements into Active Databases. The technique keeps requirements and their related artifacts synchronized with respect to their states. It automatically maintains traceability links between requirements and related artifacts when a requirement is changed. This approach can not only efficiently handle basic and necessary traceability functions, but also centralize reactive behavior by using Active Database to ensure no one bypass traceability policies.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .G42. Source: Masters Abstracts International, Volume: 44-03, page: 1401. Thesis (M.Sc.)--University of Windsor (Canada), 2005
    corecore