267 research outputs found

    Interactive Binary Image Segmentation with Edge Preservation

    Full text link
    Binary image segmentation plays an important role in computer vision and has been widely used in many applications such as image and video editing, object extraction, and photo composition. In this paper, we propose a novel interactive binary image segmentation method based on the Markov Random Field (MRF) framework and the fast bilateral solver (FBS) technique. Specifically, we employ the geodesic distance component to build the unary term. To ensure both computation efficiency and effective responsiveness for interactive segmentation, superpixels are used in computing geodesic distances instead of pixels. Furthermore, we take a bilateral affinity approach for the pairwise term in order to preserve edge information and denoise. Through the alternating direction strategy, the MRF energy minimization problem is divided into two subproblems, which then can be easily solved by steepest gradient descent (SGD) and FBS respectively. Experimental results on the VGG interactive image segmentation dataset show that the proposed algorithm outperforms several state-of-the-art ones, and in particular, it can achieve satisfactory edge-smooth segmentation results even when the foreground and background color appearances are quite indistinctive

    Deep Interactive Object Selection

    Full text link
    Interactive object selection is a very important research problem and has many applications. Previous algorithms require substantial user interactions to estimate the foreground and background distributions. In this paper, we present a novel deep learning based algorithm which has a much better understanding of objectness and thus can reduce user interactions to just a few clicks. Our algorithm transforms user provided positive and negative clicks into two Euclidean distance maps which are then concatenated with the RGB channels of images to compose (image, user interactions) pairs. We generate many of such pairs by combining several random sampling strategies to model user click patterns and use them to fine tune deep Fully Convolutional Networks (FCNs). Finally the output probability maps of our FCN 8s model is integrated with graph cut optimization to refine the boundary segments. Our model is trained on the PASCAL segmentation dataset and evaluated on other datasets with different object classes. Experimental results on both seen and unseen objects clearly demonstrate that our algorithm has a good generalization ability and is superior to all existing interactive object selection approaches.Comment: Computer Vision and Pattern Recognitio

    Neutro-Connectedness Cut

    Full text link
    Interactive image segmentation is a challenging task and receives increasing attention recently; however, two major drawbacks exist in interactive segmentation approaches. First, the segmentation performance of ROI-based methods is sensitive to the initial ROI: different ROIs may produce results with great difference. Second, most seed-based methods need intense interactions, and are not applicable in many cases. In this work, we generalize the Neutro-Connectedness (NC) to be independent of top-down priors of objects and to model image topology with indeterminacy measurement on image regions, propose a novel method for determining object and background regions, which is applied to exclude isolated background regions and enforce label consistency, and put forward a hybrid interactive segmentation method, Neutro-Connectedness Cut (NC-Cut), which can overcome the above two problems by utilizing both pixel-wise appearance information and region-based NC properties. We evaluate the proposed NC-Cut by employing two image datasets (265 images), and demonstrate that the proposed approach outperforms state-of-the-art interactive image segmentation methods (Grabcut, MILCut, One-Cut, MGC_max^sum and pPBC).Comment: 15 pages, 14 figures, 4 tables, journa

    Dominant Sets for "Constrained" Image Segmentation

    Full text link
    Image segmentation has come a long way since the early days of computer vision, and still remains a challenging task. Modern variations of the classical (purely bottom-up) approach, involve, e.g., some form of user assistance (interactive segmentation) or ask for the simultaneous segmentation of two or more images (co-segmentation). At an abstract level, all these variants can be thought of as "constrained" versions of the original formulation, whereby the segmentation process is guided by some external source of information. In this paper, we propose a new approach to tackle this kind of problems in a unified way. Our work is based on some properties of a family of quadratic optimization problems related to dominant sets, a well-known graph-theoretic notion of a cluster which generalizes the concept of a maximal clique to edge-weighted graphs. In particular, we show that by properly controlling a regularization parameter which determines the structure and the scale of the underlying problem, we are in a position to extract groups of dominant-set clusters that are constrained to contain predefined elements. In particular, we shall focus on interactive segmentation and co-segmentation (in both the unsupervised and the interactive versions). The proposed algorithm can deal naturally with several type of constraints and input modality, including scribbles, sloppy contours, and bounding boxes, and is able to robustly handle noisy annotations on the part of the user. Experiments on standard benchmark datasets show the effectiveness of our approach as compared to state-of-the-art algorithms on a variety of natural images under several input conditions and constraints.Comment: arXiv admin note: text overlap with arXiv:1608.0064

    DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation

    Full text link
    Accurate medical image segmentation is essential for diagnosis, surgical planning and many other applications. Convolutional Neural Networks (CNNs) have become the state-of-the-art automatic segmentation methods. However, fully automatic results may still need to be refined to become accurate and robust enough for clinical use. We propose a deep learning-based interactive segmentation method to improve the results obtained by an automatic CNN and to reduce user interactions during refinement for higher accuracy. We use one CNN to obtain an initial automatic segmentation, on which user interactions are added to indicate mis-segmentations. Another CNN takes as input the user interactions with the initial segmentation and gives a refined result. We propose to combine user interactions with CNNs through geodesic distance transforms, and propose a resolution-preserving network that gives a better dense prediction. In addition, we integrate user interactions as hard constraints into a back-propagatable Conditional Random Field. We validated the proposed framework in the context of 2D placenta segmentation from fetal MRI and 3D brain tumor segmentation from FLAIR images. Experimental results show our method achieves a large improvement from automatic CNNs, and obtains comparable and even higher accuracy with fewer user interventions and less time compared with traditional interactive methods.Comment: 14 pages, 15 figure

    Selective Video Object Cutout

    Full text link
    Conventional video segmentation approaches rely heavily on appearance models. Such methods often use appearance descriptors that have limited discriminative power under complex scenarios. To improve the segmentation performance, this paper presents a pyramid histogram based confidence map that incorporates structure information into appearance statistics. It also combines geodesic distance based dynamic models. Then, it employs an efficient measure of uncertainty propagation using local classifiers to determine the image regions where the object labels might be ambiguous. The final foreground cutout is obtained by refining on the uncertain regions. Additionally, to reduce manual labeling, our method determines the frames to be labeled by the human operator in a principled manner, which further boosts the segmentation performance and minimizes the labeling effort. Our extensive experimental analyses on two big benchmarks demonstrate that our solution achieves superior performance, favorable computational efficiency, and reduced manual labeling in comparison to the state-of-the-art.Comment: W. Wang, J. Shen, and F. Porikli. "Selective video object cutout." IEEE Transactions on Image Processing 26.12 (2017): 5645-565

    An interactive image segmentation method in hand gesture recognition

    Get PDF
    In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy

    Habitat: A Platform for Embodied AI Research

    Full text link
    We present Habitat, a platform for research in embodied artificial intelligence (AI). Habitat enables training embodied agents (virtual robots) in highly efficient photorealistic 3D simulation. Specifically, Habitat consists of: (i) Habitat-Sim: a flexible, high-performance 3D simulator with configurable agents, sensors, and generic 3D dataset handling. Habitat-Sim is fast -- when rendering a scene from Matterport3D, it achieves several thousand frames per second (fps) running single-threaded, and can reach over 10,000 fps multi-process on a single GPU. (ii) Habitat-API: a modular high-level library for end-to-end development of embodied AI algorithms -- defining tasks (e.g., navigation, instruction following, question answering), configuring, training, and benchmarking embodied agents. These large-scale engineering contributions enable us to answer scientific questions requiring experiments that were till now impracticable or 'merely' impractical. Specifically, in the context of point-goal navigation: (1) we revisit the comparison between learning and SLAM approaches from two recent works and find evidence for the opposite conclusion -- that learning outperforms SLAM if scaled to an order of magnitude more experience than previous investigations, and (2) we conduct the first cross-dataset generalization experiments {train, test} x {Matterport3D, Gibson} for multiple sensors {blind, RGB, RGBD, D} and find that only agents with depth (D) sensors generalize across datasets. We hope that our open-source platform and these findings will advance research in embodied AI.Comment: ICCV 201

    f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

    Full text link
    Deep neural networks have become a mainstream approach to interactive segmentation. As we show in our experiments, while for some images a trained network provides accurate segmentation result with just a few clicks, for some unknown objects it cannot achieve satisfactory result even with a large amount of user input. Recently proposed backpropagating refinement (BRS) scheme introduces an optimization problem for interactive segmentation that results in significantly better performance for the hard cases. At the same time, BRS requires running forward and backward pass through a deep network several times that leads to significantly increased computational budget per click compared to other methods. We propose f-BRS (feature backpropagating refinement scheme) that solves an optimization problem with respect to auxiliary variables instead of the network inputs, and requires running forward and backward pass just for a small part of a network. Experiments on GrabCut, Berkeley, DAVIS and SBD datasets set new state-of-the-art at an order of magnitude lower time per click compared to original BRS. The code and trained models are available at https://github.com/saic-vul/fbrs_interactive_segmentation

    AMAT: Medial Axis Transform for Natural Images

    Full text link
    We introduce Appearance-MAT (AMAT), a generalization of the medial axis transform for natural images, that is framed as a weighted geometric set cover problem. We make the following contributions: i) we extend previous medial point detection methods for color images, by associating each medial point with a local scale; ii) inspired by the invertibility property of the binary MAT, we also associate each medial point with a local encoding that allows us to invert the AMAT, reconstructing the input image; iii) we describe a clustering scheme that takes advantage of the additional scale and appearance information to group individual points into medial branches, providing a shape decomposition of the underlying image regions. In our experiments, we show state-of-the-art performance in medial point detection on Berkeley Medial AXes (BMAX500), a new dataset of medial axes based on the BSDS500 database, and good generalization on the SK506 and WH-SYMMAX datasets. We also measure the quality of reconstructed images from BMAX500, obtained by inverting their computed AMAT. Our approach delivers significantly better reconstruction quality with respect to three baselines, using just 10% of the image pixels. Our code and annotations are available at https://github.com/tsogkas/amat .Comment: 10 pages (including references), 5 figures, accepted at ICCV 201
    corecore