6,184 research outputs found

    Explainable Active Learning for Preference Elicitation

    Full text link
    Gaining insights into the preferences of new users and subsequently personalizing recommendations necessitate managing user interactions intelligently, namely, posing pertinent questions to elicit valuable information effectively. In this study, our focus is on a specific scenario of the cold-start problem, where the recommendation system lacks adequate user presence or access to other users' data is restricted, obstructing employing user profiling methods utilizing existing data in the system. We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort. AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them and eventually updating a machine learning (ML) model. We operate AL in an integrated process of unsupervised, semi-supervised, and supervised ML within an explanatory preference elicitation process. It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying ML model estimating user preferences. The designed user interaction facilitates personalizing the system by incorporating user feedback into the ML model and also enhances user trust by refining the system's explanations on recommendations. We implement the proposed preference elicitation methodology for food recommendation. We conducted human experiments to assess its efficacy in the short term and also experimented with several AL strategies over synthetic user profiles that we created for two food datasets, aiming for long-term performance analysis. The experimental results demonstrate the efficiency of the proposed preference elicitation with limited user-labeled data while also enhancing user trust through accurate explanations.Comment: Preprin

    Prior knowledge elicitation: The past, present, and future

    Get PDF
    Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology.Fil: Mikkola, Petrus. Aalto University; FinlandiaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Aalto University; FinlandiaFil: Chandramoul, Suyog. Aalto University; FinlandiaFil: Hartmann, Marcelo. University of Helsinki; FinlandiaFil: Abril Pla, Oriol. University of Helsinki; FinlandiaFil: Thomas, Owen. University of Oslo; NoruegaFil: Pesonen, Henri. University of Oslo; NoruegaFil: Corander, Jukka. University of Oslo; NoruegaFil: Vehtari, Aki. Aalto University; FinlandiaFil: Kaski, Samuel. Aalto University; FinlandiaFil: Bürkner, Paul Christian. University Of Stuttgart; AlemaniaFil: Klami, Arto. University of Helsinki; Finlandi

    Prior knowledge elicitation: The past, present, and future

    Get PDF
    Specification of the prior distribution for a Bayesian model is a central part of the Bayesian workflow for data analysis, but it is often difficult even for statistical experts. Prior elicitation transforms domain knowledge of various kinds into well-defined prior distributions, and offers a solution to the prior specification problem, in principle. In practice, however, we are still fairly far from having usable prior elicitation tools that could significantly influence the way we build probabilistic models in academia and industry. We lack elicitation methods that integrate well into the Bayesian workflow and perform elicitation efficiently in terms of costs of time and effort. We even lack a comprehensive theoretical framework for understanding different facets of the prior elicitation problem.Why are we not widely using prior elicitation? We analyze the state of the art by identifying a range of key aspects of prior knowledge elicitation, from properties of the modelling task and the nature of the priors to the form of interaction with the expert. The existing prior elicitation literature is reviewed and categorized in these terms. This allows recognizing under-studied directions in prior elicitation research, finally leading to a proposal of several new avenues to improve prior elicitation methodology.Fil: Mikkola, Petrus. Aalto University; FinlandiaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina. Aalto University; FinlandiaFil: Chandramoul, Suyog. Aalto University; FinlandiaFil: Hartmann, Marcelo. University of Helsinki; FinlandiaFil: Abril Pla, Oriol. University of Helsinki; FinlandiaFil: Thomas, Owen. University of Oslo; NoruegaFil: Pesonen, Henri. University of Oslo; NoruegaFil: Corander, Jukka. University of Oslo; NoruegaFil: Vehtari, Aki. Aalto University; FinlandiaFil: Kaski, Samuel. Aalto University; FinlandiaFil: Bürkner, Paul Christian. University Of Stuttgart; AlemaniaFil: Klami, Arto. University of Helsinki; Finlandi

    Design Preference Elicitation, Identification and Estimation.

    Full text link
    Understanding user preference has long been a challenging topic in the design research community. Econometric methods have been adopted to link design and market, achieving design solutions sound from both engineering and business perspectives. This approach, however, only refines existing designs from revealed or stated preference data. What is needed for generating new designs is an environment for concept exploration and a channel to collect and analyze preferences on newly-explored concepts. This dissertation focuses on the development of querying techniques that learn and extract individual preferences efficiently. Throughout the dissertation, we work in the context of a human-computer interaction where in each iteration the subject is asked to choose preferred designs out of a set. The computer learns from the subject and creates the next query set so that the responses from the subject will yield the most information on the subject's preferences. The challenges of this research are: (1) To learn subject preferences within short interactions with enormous candidate designs; (2) To facilitate real-time interactions with efficient computation. Three problems are discussed surrounding how information-rich queries can be made. The major effort is devoted to preference elicitation, where we discuss how to locate the most preferred design of a subject. Using efficient global optimization, we develop search algorithms that combine exploration of new concepts and exploitation of existing knowledge, achieving near-optimal solutions with a small number of queries. For design demonstration, the elicitation algorithm is incorporated with an online 3D car modeler. The effectiveness of the algorithm is confirmed by real user tests on finding car models close to the users' targets. In preference identification, we consider designs as binary labeled, and the objective is to classify preferred designs from not-preferred ones. We show that this classification problem can be formulated and solved by the same active learning technique used for preference estimation, where the objective is to estimate a preference function. Conceptually, this dissertation discusses how to extract preference information effectively by asking relevant but not redundant questions during an interaction.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91578/1/yiren_1.pd
    corecore