1,590 research outputs found

    Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation

    Full text link
    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection

    Virtual and Augmented Reality in Neurosurgery: The Evolution of its Application and Study Designs.

    Get PDF
    BACKGROUND: As the art of neurosurgery evolves in the 21st century, more emphasis is placed on minimally invasive techniques, which require technical precision. Simultaneously, the reduction on training hours continues, and teachers of neurosurgery faces double jeopardy -with harder skills to teach and less time to teach them. Mixed reality appears as the neurosurgical educators\u27 natural ally: Virtual reality facilitates the learning of spatial relationships and permits rehearsal of skills, while augmented reality can make procedures safer and more efficient. Little wonder then, that the body of literature on mixed reality in neurosurgery has grown exponentially. METHODS: Publications involving virtual and augmented reality in neurosurgery were examined. A total of 414 papers were included, and they were categorized according to study design and analyzed. RESULTS: Half of the papers were published within the last 3 years alone. Whereas in the earlier half, most of the publications involved experiments in virtual reality simulation and the efficacy of skills acquisition, many of the more recent publication are proof-of-concept studies. This attests to the evolution of mixed reality in neurosurgery. As the technology advances, neurosurgeons are finding more applications, both in training and clinical practice. CONCLUSIONS: With parallel advancement in Internet speed and artificial intelligence, the utilization of mixed reality will permeate neurosurgery. From solving staff problems in global neurosurgery, to mitigating the deleterious effect of duty-hour reductions, to improving individual operations, mixed reality will have a positive effect in many aspects of neurosurgery

    Visualization, navigation, augmentation. The ever-changing perspective of the neurosurgeon

    Get PDF
    Introduction: The evolution of neurosurgery coincides with the evolution of visualization and navigation. Augmented reality technologies, with their ability to bring digital information into the real environment, have the potential to provide a new, revolutionary perspective to the neurosurgeon. Research question: To provide an overview on the historical and technical aspects of visualization and navigation in neurosurgery, and to provide a systematic review on augmented reality (AR) applications in neurosurgery. Material and methods: We provided an overview on the main historical milestones and technical features of visualization and navigation tools in neurosurgery. We systematically searched PubMed and Scopus databases for AR applications in neurosurgery and specifically discussed their relationship with current visualization and navigation systems, as well as main limitations. Results: The evolution of visualization in neurosurgery is embodied by four magnification systems: surgical loupes, endoscope, surgical microscope and more recently the exoscope, each presenting independent features in terms of magnification capabilities, eye-hand coordination and the possibility to implement additional functions. In regard to navigation, two independent systems have been developed: the frame-based and the frame-less systems. The most frequent application setting for AR is brain surgery (71.6%), specifically neuro-oncology (36.2%) and microscope-based (29.2%), even though in the majority of cases AR applications presented their own visualization supports (66%). Discussion and conclusions: The evolution of visualization and navigation in neurosurgery allowed for the development of more precise instruments; the development and clinical validation of AR applications, have the potential to be the next breakthrough, making surgeries safer, as well as improving surgical experience and reducing costs

    Microscope Embedded Neurosurgical Training and Intraoperative System

    Get PDF
    In the recent years, neurosurgery has been strongly influenced by new technologies. Computer Aided Surgery (CAS) offers several benefits for patients\u27 safety but fine techniques targeted to obtain minimally invasive and traumatic treatments are required, since intra-operative false movements can be devastating, resulting in patients deaths. The precision of the surgical gesture is related both to accuracy of the available technological instruments and surgeon\u27s experience. In this frame, medical training is particularly important. From a technological point of view, the use of Virtual Reality (VR) for surgeon training and Augmented Reality (AR) for intra-operative treatments offer the best results. In addition, traditional techniques for training in surgery include the use of animals, phantoms and cadavers. The main limitation of these approaches is that live tissue has different properties from dead tissue and that animal anatomy is significantly different from the human. From the medical point of view, Low-Grade Gliomas (LGGs) are intrinsic brain tumours that typically occur in younger adults. The objective of related treatment is to remove as much of the tumour as possible while minimizing damage to the healthy brain. Pathological tissue may closely resemble normal brain parenchyma when looked at through the neurosurgical microscope. The tactile appreciation of the different consistency of the tumour compared to normal brain requires considerable experience on the part of the neurosurgeon and it is a vital point. The first part of this PhD thesis presents a system for realistic simulation (visual and haptic) of the spatula palpation of the LGG. This is the first prototype of a training system using VR, haptics and a real microscope for neurosurgery. This architecture can be also adapted for intra-operative purposes. In this instance, a surgeon needs the basic setup for the Image Guided Therapy (IGT) interventions: microscope, monitors and navigated surgical instruments. The same virtual environment can be AR rendered onto the microscope optics. The objective is to enhance the surgeon\u27s ability for a better intra-operative orientation by giving him a three-dimensional view and other information necessary for a safe navigation inside the patient. The last considerations have served as motivation for the second part of this work which has been devoted to improving a prototype of an AR stereoscopic microscope for neurosurgical interventions, developed in our institute in a previous work. A completely new software has been developed in order to reuse the microscope hardware, enhancing both rendering performances and usability. Since both AR and VR share the same platform, the system can be referred to as Mixed Reality System for neurosurgery. All the components are open source or at least based on a GPL license

    The HoloLens in Medicine: A systematic Review and Taxonomy

    Full text link
    The HoloLens (Microsoft Corp., Redmond, WA), a head-worn, optically see-through augmented reality display, is the main player in the recent boost in medical augmented reality research. In medical settings, the HoloLens enables the physician to obtain immediate insight into patient information, directly overlaid with their view of the clinical scenario, the medical student to gain a better understanding of complex anatomies or procedures, and even the patient to execute therapeutic tasks with improved, immersive guidance. In this systematic review, we provide a comprehensive overview of the usage of the first-generation HoloLens within the medical domain, from its release in March 2016, until the year of 2021, were attention is shifting towards it's successor, the HoloLens 2. We identified 171 relevant publications through a systematic search of the PubMed and Scopus databases. We analyze these publications in regard to their intended use case, technical methodology for registration and tracking, data sources, visualization as well as validation and evaluation. We find that, although the feasibility of using the HoloLens in various medical scenarios has been shown, increased efforts in the areas of precision, reliability, usability, workflow and perception are necessary to establish AR in clinical practice.Comment: 35 pages, 11 figure

    Recent Developments and Future Challenges in Medical Mixed Reality

    Get PDF
    As AR technology matures, we have seen many applicationsemerge in entertainment, education and training. However, the useof AR is not yet common in medical practice, despite the great po-tential of this technology to help not only learning and training inmedicine, but also in assisting diagnosis and surgical guidance. Inthis paper, we present recent trends in the use of AR across all med-ical specialties and identify challenges that must be overcome tonarrow the gap between academic research and practical use of ARin medicine. A database of 1403 relevant research papers publishedover the last two decades has been reviewed by using a novel re-search trend analysis method based on text mining algorithm. Wesemantically identified 10 topics including varies of technologiesand applications based on the non-biased and in-personal cluster-ing results from the Latent Dirichlet Allocatio (LDA) model andanalysed the trend of each topic from 1995 to 2015. The statisticresults reveal a taxonomy that can best describes the developmentof the medical AR research during the two decades. And the trendanalysis provide a higher level of view of how the taxonomy haschanged and where the focus will goes. Finally, based on the valu-able results, we provide a insightful discussion to the current limi-tations, challenges and future directions in the field. Our objectiveis to aid researchers to focus on the application areas in medicalAR that are most needed, as well as providing medical practitioners with latest technology advancements

    Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery

    Get PDF
    Background: Augmented reality (AR) has the potential to support complex neurosurgical interventions by including visual information seamlessly. This study examines intraoperative visualization parameters and clinical impact of AR in brain tumor surgery. Methods: Fifty-five intracranial lesions, operated either with AR-navigated microscope (n = 39) or conventional neuronavigation (n = 16) after randomization, have been included prospectively. Surgical resection time, duration/type/mode of AR, displayed objects (n, type), pointer-based navigation checks (n), usability of control, quality indicators, and overall surgical usefulness of AR have been assessed. Results: AR display has been used in 44.4% of resection time. Predominant AR type was navigation view (75.7%), followed by target volumes (20.1%). Predominant AR mode was picture-in-picture (PiP) (72.5%), followed by 23.3% overlay display. In 43.6% of cases, vision of important anatomical structures has been partially or entirely blocked by AR information. A total of 7.7% of cases used MRI navigation only, 30.8% used one, 23.1% used two, and 38.5% used three or more object segmentations in AR navigation. A total of 66.7% of surgeons found AR visualization helpful in the individual surgical case. AR depth information and accuracy have been rated acceptable (median 3.0 vs. median 5.0 in conventional neuronavigation). The mean utilization of the navigation pointer was 2.6 x /resection hour (AR) vs. 9.7 x /resection hour (neuronavigation); navigation effort was significantly reduced in AR (P < 0.001). Conclusions: The main benefit of HUD-based AR visualization in brain tumor surgery is the integrated continuous display allowing for pointer-less navigation. Navigation view (PiP) provides the highest usability while blocking the operative field less frequently. Visualization quality will benefit from improvements in registration accuracy and depth impression

    Augmented and virtual reality in spine surgery, current applications and future potentials

    Get PDF
    BACKGROUND CONTEXT: The field of artificial intelligence (AI) is rapidly advancing, especially with recent improvements in deep learning (DL) techniques. Augmented (AR) and virtual reality (VR) are finding their place in healthcare, and spine surgery is no exception. The unique capabilities and advantages of AR and VR devices include their low cost, flexible integration with other technologies, user-friendly features and their application in navigation systems, which makes them beneficial across different aspects of spine surgery. Despite the use of AR for pedicle screw placement, targeted cervical foraminotomy, bone biopsy, osteotomy planning, and percutaneous intervention, the current applications of AR and VR in spine surgery remain limited. PURPOSE: The primary goal of this study was to provide the spine surgeons and clinical researchers with the general information about the current applications, future potentials, and accessibility of AR and VR systems in spine surgery. STUDY DESIGN/SETTING: We reviewed titles of more than 250 journal papers from google scholar and PubMed with search words: augmented reality, virtual reality, spine surgery, and orthopaedic, out of which 89 related papers were selected for abstract review. Finally, full text of 67 papers were analyzed and reviewed. METHODS: The papers were divided into four groups: technological papers, applications in surgery, applications in spine education and training, and general application in orthopaedic. A team of two reviewers performed paper reviews and a thorough web search to ensure the most updated state of the art in each of four group is captured in the review. RESULTS: In this review we discuss the current state of the art in AR and VR hardware, their preoperative applications and surgical applications in spine surgery. Finally, we discuss the future potentials of AR and VR and their integration with AI, robotic surgery, gaming, and wearables. CONCLUSIONS: AR and VR are promising technologies that will soon become part of standard of care in spine surgery. (C) 2021 Published by Elsevier Inc
    • …
    corecore