1,257 research outputs found

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Interactive volume ray tracing

    Get PDF
    Die Visualisierung von volumetrischen Daten ist eine der interessantesten, aber sicherlich auch schwierigsten Anwendungsgebiete innerhalb der wissenschaftlichen Visualisierung. Im Gegensatz zu Oberflächenmodellen, repräsentieren solche Daten ein semi-transparentes Medium in einem 3D-Feld. Anwendungen reichen von medizinischen Untersuchungen, Simulation physikalischer Prozesse bis hin zur visuellen Kunst. Viele dieser Anwendungen verlangen Interaktivität hinsichtlich Darstellungs- und Visualisierungsparameter. Der Ray-Tracing- (Stahlverfolgungs-) Algorithmus wurde dabei, obwohl er inhärent die Interaktion mit einem solchen Medium simulieren kann, immer als zu langsam angesehen. Die meisten Forscher konzentrierten sich vielmehr auf Rasterisierungsansätze, da diese besser für Grafikkarten geeignet sind. Dabei leiden diese Ansätze entweder unter einer ungenügenden Qualität respektive Flexibilität. Die andere Alternative besteht darin, den Ray-Tracing-Algorithmus so zu beschleunigen, dass er sinnvoll für Visualisierungsanwendungen benutzt werden kann. Seit der Verfügbarkeit moderner Grafikkarten hat die Forschung auf diesem Gebiet nachgelassen, obwohl selbst moderne GPUs immer noch Limitierungen, wie beispielsweise der begrenzte Grafikkartenspeicher oder das umständliche Programmiermodell, enthalten. Die beiden in dieser Arbeit vorgestellten Methoden sind deshalb vollständig softwarebasiert, da es sinnvoller erscheint, möglichst viele Optimierungen in Software zu realisieren, bevor eine Portierung auf Hardware erfolgt. Die erste Methode wird impliziter Kd-Baum genannt, eine hierarchische und räumliche Beschleunigungstruktur, die ursprünglich für die Generierung von Isoflächen reguläre Gitterdatensätze entwickelt wurde. In der Zwischenzeit unterstützt sie auch die semi-transparente Darstellung, die Darstellung von zeitabhängigen Datensätzen und wurde erfolgreich für andere Anwendungen eingesetzt. Der zweite Algorithmus benutzt so genannte Plücker-Koordinaten, welche die Implementierung eines schnellen inkrementellen Traversierers für Datensätze erlauben, deren Primitive Tetraeder beziehungsweise Hexaeder sind. Beide Algorithmen wurden wesentlich optimiert, um eine interaktive Bildgenerierung volumetrischer Daten zu ermöglichen und stellen deshalb einen wichtigen Beitrag hin zu einem flexiblen und interaktiven Volumen-Ray-Tracing-System dar.Volume rendering is one of the most demanding and interesting topics among scientific visualization. Applications include medical examinations, simulation of physical processes, and visual art. Most of these applications demand interactivity with respect to the viewing and visualization parameters. The ray tracing algorithm, although inherently simulating light interaction with participating media, was always considered too slow. Instead, most researchers followed object-order algorithms better suited for graphics adapters, although such approaches often suffer either from low quality or lack of flexibility. Another alternative is to speed up the ray tracing algorithm to make it competitive for volumetric visualization tasks. Since the advent of modern graphic adapters, research in this area had somehow ceased, although some limitations of GPUs, e.g. limited graphics board memory and tedious programming model, are still a problem. The two methods discussed in this thesis are therefore purely software-based since it is believed that software implementations allow for a far better optimization process before porting algorithms to hardware. The first method is called implicit kd-tree, which is a hierarchical spatial acceleration structure originally developed for iso-surface rendering of regular data sets that now supports semi-transparent rendering, time-dependent data visualization, and is even used in non volume-rendering applications. The second algorithm uses so-called Plücker coordinates, providing a fast incremental traversal for data sets consisting of tetrahedral or hexahedral primitives. Both algorithms are highly optimized to support interactive rendering of volumetric data sets and are therefore major contributions towards a flexible and interactive volume ray tracing framework

    Hybrid Sample-based Surface Rendering

    Get PDF
    The performance of rasterization-based rendering on current GPUs strongly depends on the abilities to avoid overdraw and to prevent rendering triangles smaller than the pixel size. Otherwise, the rates at which highresolution polygon models can be displayed are affected significantly. Instead of trying to build these abilities into the rasterization-based rendering pipeline, we propose an alternative rendering pipeline implementation that uses rasterization and ray-casting in every frame simultaneously to determine eye-ray intersections. To make ray-casting competitive with rasterization, we introduce a memory-efficient sample-based data structure which gives rise to an efficient ray traversal procedure. In combination with a regular model subdivision, the most optimal rendering technique can be selected at run-time for each part. For very large triangle meshes our method can outperform pure rasterization and requires a considerably smaller memory budget on the GPU. Since the proposed data structure can be constructed from any renderable surface representation, it can also be used to efficiently render isosurfaces in scalar volume fields. The compactness of the data structure allows rendering from GPU memory when alternative techniques already require exhaustive paging

    Visualization for the Physical Sciences

    Get PDF

    Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution

    Full text link
    Rendering an accurate image of an isosurface in a volumetric field typically requires large numbers of data samples. Reducing the number of required samples lies at the core of research in volume rendering. With the advent of deep learning networks, a number of architectures have been proposed recently to infer missing samples in multi-dimensional fields, for applications such as image super-resolution and scan completion. In this paper, we investigate the use of such architectures for learning the upscaling of a low-resolution sampling of an isosurface to a higher resolution, with high fidelity reconstruction of spatial detail and shading. We introduce a fully convolutional neural network, to learn a latent representation generating a smooth, edge-aware normal field and ambient occlusions from a low-resolution normal and depth field. By adding a frame-to-frame motion loss into the learning stage, the upscaling can consider temporal variations and achieves improved frame-to-frame coherence. We demonstrate the quality of the network for isosurfaces which were never seen during training, and discuss remote and in-situ visualization as well as focus+context visualization as potential application

    Photorealistic physically based render engines: a comparative study

    Full text link
    PĂ©rez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad
    • …
    corecore