73 research outputs found

    Image Inpainting with Improved Storage Capability using DCT

    Get PDF
    Nowadays, tremendous amount of digital media is generating but having grazes on it. In this paper we proposed new idea to remove the graze from image, called image inpainting where in, Exemplar based image inpainting follows discrete cosine transform . The exemplar based image inpainting is based on copy-and-paste texture synthesis for reconstructing damaged parts of an image. Based on exemplar-matching techniques performance and speed of algorithm increases but size of image is also increases so, we proposed discrete cosine transform for reducing the size of image, removing noise and ultimately provides it good quality of image

    Image Completion: Comparison of Different Methods and Combination of Techniques

    Get PDF
    Image completion is the process of filling missing regions of an image based on the known sections of the image. This technique is useful for repairing damaged images or removing unwanted objects from images. Research on this technique is plentiful. This thesis compares three different approaches to image completion. In addition, a new method is proposed which combines features from two of these algorithms to improve efficiency

    A novel image inpainting framework based on multilevel image pyramids

    Get PDF
    Image inpainting is the art of manipulating an image so that it is visually unrecognizable way. A considerable amount of research has been done in this area over the last few years. However, the state of art techniques does suffer from computational complexities and plausible results. This paper proposes a multi-level image pyramid-based image inpainting algorithm. The image inpainting algorithm starts with the coarsest level of the image pyramid and overpainting information is transferred to the subsequent levels until the bottom level gets inpainted. The search strategy used in the algorithm is based on hashing the coherent information in an image which makes the search fast and accurate. Also, the search space is constrained based on the propagated information thereby reducing the complexity of the algorithm. Compared to other inpainting methods; the proposed algorithm inpaints the target region with better plausibility and human vision conformation. Experimental results show that the proposed algorithm achieves better results as compared to other inpainting techniques

    Visual Privacy Protection Methods: A Survey

    Get PDF
    Recent advances in computer vision technologies have made possible the development of intelligent monitoring systems for video surveillance and ambient-assisted living. By using this technology, these systems are able to automatically interpret visual data from the environment and perform tasks that would have been unthinkable years ago. These achievements represent a radical improvement but they also suppose a new threat to individual’s privacy. The new capabilities of such systems give them the ability to collect and index a huge amount of private information about each individual. Next-generation systems have to solve this issue in order to obtain the users’ acceptance. Therefore, there is a need for mechanisms or tools to protect and preserve people’s privacy. This paper seeks to clarify how privacy can be protected in imagery data, so as a main contribution a comprehensive classification of the protection methods for visual privacy as well as an up-to-date review of them are provided. A survey of the existing privacy-aware intelligent monitoring systems and a valuable discussion of important aspects of visual privacy are also provided.This work has been partially supported by the Spanish Ministry of Science and Innovation under project “Sistema de visión para la monitorización de la actividad de la vida diaria en el hogar” (TIN2010-20510-C04-02) and by the European Commission under project “caring4U - A study on people activity in private spaces: towards a multisensor network that meets privacy requirements” (PIEF-GA-2010-274649). José Ramón Padilla López and Alexandros Andre Chaaraoui acknowledge financial support by the Conselleria d'Educació, Formació i Ocupació of the Generalitat Valenciana (fellowship ACIF/2012/064 and ACIF/2011/160 respectively)

    Livrable D2.2 of the PERSEE project : Analyse/Synthese de Texture

    Get PDF
    Livrable D2.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D2.2 du projet. Son titre : Analyse/Synthese de Textur

    Light field coding with field of view scalability and exemplar-based inter-layer prediction

    Get PDF
    Light field imaging based on microlens arrays—a.k.a. holoscopic, plenoptic, and integral imaging—has currently risen up as a feasible and prospective technology for future image and video applications. However, deploying actual light field applications will require identifying more powerful representations and coding solutions that support arising new manipulation and interaction functionalities. In this context, this paper proposes a novel scalable coding solution that supports a new type of scalability, referred to as field-of-view scalability. The proposed scalable coding solution comprises a base layer compliant with the High Efficiency Video Coding (HEVC) standard, complemented by one or more enhancement layers that progressively allow richer versions of the same light field content in terms of content manipulation and interaction possibilities. In addition, to achieve high-compression performance in the enhancement layers, novel exemplar-based interlayer coding tools are also proposed, namely: 1) a direct prediction based on exemplar texture samples from lower layers and 2) an interlayer compensated prediction using a reference picture that is built relying on an exemplar-based algorithm for texture synthesis. Experimental results demonstrate the advantages of the proposed scalable coding solution to cater to users with different preferences/requirements in terms of interaction functionalities, while providing better rate- distortion performance (independently of the optical setup used for acquisition) compared to HEVC and other scalable light field coding solutions in the literature.info:eu-repo/semantics/acceptedVersio

    Mathematical Approaches for Image Enhancement Problems

    Get PDF
    This thesis develops novel techniques that can solve some image enhancement problems using theoretically and technically proven and very useful mathematical tools to image processing such as wavelet transforms, partial differential equations, and variational models. Three subtopics are mainly covered. First, color image denoising framework is introduced to achieve high quality denoising results by considering correlations between color components while existing denoising approaches can be plugged in flexibly. Second, a new and efficient framework for image contrast and color enhancement in the compressed wavelet domain is proposed. The proposed approach is capable of enhancing both global and local contrast and brightness as well as preserving color consistency. The framework does not require inverse transform for image enhancement since linear scale factors are directly applied to both scaling and wavelet coefficients in the compressed domain, which results in high computational efficiency. Also contaminated noise in the image can be efficiently reduced by introducing wavelet shrinkage terms adaptively in different scales. The proposed method is able to enhance a wavelet-coded image computationally efficiently with high image quality and less noise or other artifact. The experimental results show that the proposed method produces encouraging results both visually and numerically compared to some existing approaches. Finally, image inpainting problem is discussed. Literature review, psychological analysis, and challenges on image inpainting problem and related topics are described. An inpainting algorithm using energy minimization and texture mapping is proposed. Mumford-Shah energy minimization model detects and preserves edges in the inpainting domain by detecting both the main structure and the detailed edges. This approach utilizes faster hierarchical level set method and guarantees convergence independent of initial conditions. The estimated segmentation results in the inpainting domain are stored in segmentation map, which is referred by a texture mapping algorithm for filling textured regions. We also propose an inpainting algorithm using wavelet transform that can expect better global structure estimation of the unknown region in addition to shape and texture properties since wavelet transforms have been used for various image analysis problems due to its nice multi-resolution properties and decoupling characteristics

    Patch-based methods for variational image processing problems

    Get PDF
    Image Processing problems are notoriously difficult. To name a few of these difficulties, they are usually ill-posed, involve a huge number of unknowns (from one to several per pixel!), and images cannot be considered as the linear superposition of a few physical sources as they contain many different scales and non-linearities. However, if one considers instead of images as a whole small blocks (or patches) inside the pictures, many of these hurdles vanish and problems become much easier to solve, at the cost of increasing again the dimensionality of the data to process. Following the seminal NL-means algorithm in 2005-2006, methods that consider only the visual correlation between patches and ignore their spatial relationship are called non-local methods. While powerful, it is an arduous task to define non-local methods without using heuristic formulations or complex mathematical frameworks. On the other hand, another powerful property has brought global image processing algorithms one step further: it is the sparsity of images in well chosen representation basis. However, this property is difficult to embed naturally in non-local methods, yielding algorithms that are usually inefficient or circonvoluted. In this thesis, we explore alternative approaches to non-locality, with the goals of i) developing universal approaches that can handle local and non-local constraints and ii) leveraging the qualities of both non-locality and sparsity. For the first point, we will see that embedding the patches of an image into a graph-based framework can yield a simple algorithm that can switch from local to non-local diffusion, which we will apply to the problem of large area image inpainting. For the second point, we will first study a fast patch preselection process that is able to group patches according to their visual content. This preselection operator will then serve as input to a social sparsity enforcing operator that will create sparse groups of jointly sparse patches, thus exploiting all the redundancies present in the data, in a simple mathematical framework. Finally, we will study the problem of reconstructing plausible patches from a few binarized measurements. We will show that this task can be achieved in the case of popular binarized image keypoints descriptors, thus demonstrating a potential privacy issue in mobile visual recognition applications, but also opening a promising way to the design and the construction of a new generation of smart cameras

    3D exemplar-based image inpainting in electron microscopy

    Get PDF
    In electron microscopy (EM) a common problem is the non-availability of data, which causes artefacts in reconstructions. In this thesis the goal is to generate artificial data where missing in EM by using exemplar-based inpainting (EBI). We implement an accelerated 3D version tailored to applications in EM, which reduces reconstruction times from days to minutes. We develop intelligent sampling strategies to find optimal data as input for reconstruction methods. Further, we investigate approaches to reduce electron dose and acquisition time. Sparse sampling followed by inpainting is the most promising approach. As common evaluation measures may lead to misinterpretation of results in EM and falsify a subsequent analysis, we propose to use application driven metrics and demonstrate this in a segmentation task. A further application of our technique is the artificial generation of projections in tiltbased EM. EBI is used to generate missing projections, such that the full angular range is covered. Subsequent reconstructions are significantly enhanced in terms of resolution, which facilitates further analysis of samples. In conclusion, EBI proves promising when used as an additional data generation step to tackle the non-availability of data in EM, which is evaluated in selected applications. Enhancing adaptive sampling methods and refining EBI, especially considering the mutual influence, promotes higher throughput in EM using less electron dose while not lessening quality.Ein häufig vorkommendes Problem in der Elektronenmikroskopie (EM) ist die Nichtverfügbarkeit von Daten, was zu Artefakten in Rekonstruktionen führt. In dieser Arbeit ist es das Ziel fehlende Daten in der EM künstlich zu erzeugen, was durch Exemplar-basiertes Inpainting (EBI) realisiert wird. Wir implementieren eine auf EM zugeschnittene beschleunigte 3D Version, welche es ermöglicht, Rekonstruktionszeiten von Tagen auf Minuten zu reduzieren. Wir entwickeln intelligente Abtaststrategien, um optimale Datenpunkte für die Rekonstruktion zu erhalten. Ansätze zur Reduzierung von Elektronendosis und Aufnahmezeit werden untersucht. Unterabtastung gefolgt von Inpainting führt zu den besten Resultaten. Evaluationsmaße zur Beurteilung der Rekonstruktionsqualität helfen in der EM oft nicht und können zu falschen Schlüssen führen, weswegen anwendungsbasierte Metriken die bessere Wahl darstellen. Dies demonstrieren wir anhand eines Beispiels. Die künstliche Erzeugung von Projektionen in der neigungsbasierten Elektronentomographie ist eine weitere Anwendung. EBI wird verwendet um fehlende Projektionen zu generieren. Daraus resultierende Rekonstruktionen weisen eine deutlich erhöhte Auflösung auf. EBI ist ein vielversprechender Ansatz, um nicht verfügbare Daten in der EM zu generieren. Dies wird auf Basis verschiedener Anwendungen gezeigt und evaluiert. Adaptive Aufnahmestrategien und EBI können also zu einem höheren Durchsatz in der EM führen, ohne die Bildqualität merklich zu verschlechtern

    DEEP LEARNING FOR FORENSICS

    Get PDF
    The advent of media sharing platforms and the easy availability of advanced photo or video editing software have resulted in a large quantity of manipulated images and videos being shared on the internet. While the intent behind such manipulations varies widely, concerns on the spread of fake news and misinformation is growing. Therefore, detecting manipulation has become an emerging necessity. Different from traditional classification, semantic object detection or segmentation, manipulation detection/classification pays more attention to low-level tampering artifacts than to semantic content. The main challenges in this problem include (a) investigating features to reveal tampering artifacts, (b) developing generic models which are robust to a large scale of post-processing methods, (c) applying algorithms to higher resolution in real scenarios and (d) handling the new emerging manipulation techniques. In this dissertation, we propose approaches to tackling these challenges. Manipulation detection utilizes both low-level tamper artifacts and semantic contents, suggesting that richer features needed to be harnessed to reveal more evidence. To learn rich features, we propose a two-stream Faster R-CNN network and train it end-to-end to detect the tampered regions given a manipulated image. Experiments on four standard image manipulation datasets demonstrate that our two-stream framework outperforms each individual stream, and also achieves state-of-the-art performance compared to alternative methods with robustness to resizing and compression. Additionally, to extend manipulation detection from image to video, we introduce VIDNet, Video Inpainting Detection Network, which contains an encoder-decoder architecture with a quad-directional local attention module. To reveal artifacts encoded in compression, VIDNet additionally takes in Error Level Analysis (ELA) frames to augment RGB frames, producing multimodal features at different levels with an encoder. Besides, to improve the generalization of manipulation detection model, we introduce a manipulated image generation process that creates true positives using currently available datasets. Drawing from traditional work on image blending, we propose a novel generator for creating such examples. In addition, we also propose to further create examples that force the algorithm to focus on boundary artifacts during training. Extensive experimental results validate our proposal. Furthermore, to apply deep learning models to high resolution scenarios efficiently, we treat the problem as a mask refinement given a coarse low resolution prediction. We propose to convert the regions of interest into strip images and compute a boundary prediction in the strip domain. Extensive experiments on both the public and a newly created high resolution dataset strongly validate our approach. Finally, to handle new emerging manipulation techniques while preserving performance on learned manipulation, we investigate incremental learning. We propose a multi-model and multi-level knowledge distillation strategy to preserve performance on old categories while training on new categories. Experiments on standard incremental learning benchmarks show that our method improves the overall performance over standard distillation techniques
    corecore