1,474 research outputs found

    Learning Human-Robot Collaboration Insights through the Integration of Muscle Activity in Interaction Motion Models

    Full text link
    Recent progress in human-robot collaboration makes fast and fluid interactions possible, even when human observations are partial and occluded. Methods like Interaction Probabilistic Movement Primitives (ProMP) model human trajectories through motion capture systems. However, such representation does not properly model tasks where similar motions handle different objects. Under current approaches, a robot would not adapt its pose and dynamics for proper handling. We integrate the use of Electromyography (EMG) into the Interaction ProMP framework and utilize muscular signals to augment the human observation representation. The contribution of our paper is increased task discernment when trajectories are similar but tools are different and require the robot to adjust its pose for proper handling. Interaction ProMPs are used with an augmented vector that integrates muscle activity. Augmented time-normalized trajectories are used in training to learn correlation parameters and robot motions are predicted by finding the best weight combination and temporal scaling for a task. Collaborative single task scenarios with similar motions but different objects were used and compared. For one experiment only joint angles were recorded, for the other EMG signals were additionally integrated. Task recognition was computed for both tasks. Observation state vectors with augmented EMG signals were able to completely identify differences across tasks, while the baseline method failed every time. Integrating EMG signals into collaborative tasks significantly increases the ability of the system to recognize nuances in the tasks that are otherwise imperceptible, up to 74.6% in our studies. Furthermore, the integration of EMG signals for collaboration also opens the door to a wide class of human-robot physical interactions based on haptic communication that has been largely unexploited in the field.Comment: 7 pages, 2 figures, 2 tables. As submitted to Humanoids 201

    Probabilistic movement modeling for intention inference in human-robot interaction.

    No full text
    Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes ’ theorem. The IDDM simultaneously finds a latent state representation of noisy and highdimensional observations, and models the intention-driven dynamics in the latent states. As most robotics applications are subject to real-time constraints, we develop an efficient online algorithm that allows for real-time intention inference. Two human-robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition for interactive humanoid robots, are used to evaluate the performance of our inference algorithm. In both intention inference tasks, the proposed algorithm achieves substantial improvements over support vector machines and Gaussian processes.

    Probabilistic Models of Motor Production

    Get PDF
    N. Bernstein defined the ability of the central neural system (CNS) to control many degrees of freedom of a physical body with all its redundancy and flexibility as the main problem in motor control. He pointed at that man-made mechanisms usually have one, sometimes two degrees of freedom (DOF); when the number of DOF increases further, it becomes prohibitively hard to control them. The brain, however, seems to perform such control effortlessly. He suggested the way the brain might deal with it: when a motor skill is being acquired, the brain artificially limits the degrees of freedoms, leaving only one or two. As the skill level increases, the brain gradually "frees" the previously fixed DOF, applying control when needed and in directions which have to be corrected, eventually arriving to the control scheme where all the DOF are "free". This approach of reducing the dimensionality of motor control remains relevant even today. One the possibles solutions of the Bernstetin's problem is the hypothesis of motor primitives (MPs) - small building blocks that constitute complex movements and facilitite motor learnirng and task completion. Just like in the visual system, having a homogenious hierarchical architecture built of similar computational elements may be beneficial. Studying such a complicated object as brain, it is important to define at which level of details one works and which questions one aims to answer. David Marr suggested three levels of analysis: 1. computational, analysing which problem the system solves; 2. algorithmic, questioning which representation the system uses and which computations it performs; 3. implementational, finding how such computations are performed by neurons in the brain. In this thesis we stay at the first two levels, seeking for the basic representation of motor output. In this work we present a new model of motor primitives that comprises multiple interacting latent dynamical systems, and give it a full Bayesian treatment. Modelling within the Bayesian framework, in my opinion, must become the new standard in hypothesis testing in neuroscience. Only the Bayesian framework gives us guarantees when dealing with the inevitable plethora of hidden variables and uncertainty. The special type of coupling of dynamical systems we proposed, based on the Product of Experts, has many natural interpretations in the Bayesian framework. If the dynamical systems run in parallel, it yields Bayesian cue integration. If they are organized hierarchically due to serial coupling, we get hierarchical priors over the dynamics. If one of the dynamical systems represents sensory state, we arrive to the sensory-motor primitives. The compact representation that follows from the variational treatment allows learning of a motor primitives library. Learned separately, combined motion can be represented as a matrix of coupling values. We performed a set of experiments to compare different models of motor primitives. In a series of 2-alternative forced choice (2AFC) experiments participants were discriminating natural and synthesised movements, thus running a graphics Turing test. When available, Bayesian model score predicted the naturalness of the perceived movements. For simple movements, like walking, Bayesian model comparison and psychophysics tests indicate that one dynamical system is sufficient to describe the data. For more complex movements, like walking and waving, motion can be better represented as a set of coupled dynamical systems. We also experimentally confirmed that Bayesian treatment of model learning on motion data is superior to the simple point estimate of latent parameters. Experiments with non-periodic movements show that they do not benefit from more complex latent dynamics, despite having high kinematic complexity. By having a fully Bayesian models, we could quantitatively disentangle the influence of motion dynamics and pose on the perception of naturalness. We confirmed that rich and correct dynamics is more important than the kinematic representation. There are numerous further directions of research. In the models we devised, for multiple parts, even though the latent dynamics was factorized on a set of interacting systems, the kinematic parts were completely independent. Thus, interaction between the kinematic parts could be mediated only by the latent dynamics interactions. A more flexible model would allow a dense interaction on the kinematic level too. Another important problem relates to the representation of time in Markov chains. Discrete time Markov chains form an approximation to continuous dynamics. As time step is assumed to be fixed, we face with the problem of time step selection. Time is also not a explicit parameter in Markov chains. This also prohibits explicit optimization of time as parameter and reasoning (inference) about it. For example, in optimal control boundary conditions are usually set at exact time points, which is not an ecological scenario, where time is usually a parameter of optimization. Making time an explicit parameter in dynamics may alleviate this

    Modeling variation of human motion

    Get PDF
    The synthesis of realistic human motion with large variations and different styles has a growing interest in simulation applications such as the game industry, psychological experiments, and ergonomic analysis. The statistical generative models are used by motion controllers in our motion synthesis framework to create new animations for different scenarios. Data-driven motion synthesis approaches are powerful tools for producing high-fidelity character animations. With the development of motion capture technologies, more and more motion data are publicly available now. However, how to efficiently reuse a large amount of motion data to create new motions for arbitrary scenarios poses challenges, especially for unsupervised motion synthesis. This thesis presents a series of works that analyze and model the variations of human motion data. The goal is to learn statistical generative models to create any number of new human animations with rich variations and styles. The work of the thesis will be presented in three main chapters. We first explore how variation is represented in motion data. Learning a compact latent space that can expressively contain motion variation is essential for modeling motion data. We propose a novel motion latent space learning approach that can intrinsically tackle the spatialtemporal properties of motion data. Secondly, we present our Morphable Graph framework for human motion modeling and synthesis for assembly workshop scenarios. A series of studies have been conducted to apply statistical motion modeling and synthesis approaches for complex assembly workshop use cases. Learning the distribution of motion data can provide a compact representation of motion variations and convert motion synthesis tasks to optimization problems. Finally, we show how the style variations of human activities can be modeled with a limited number of examples. Natural human movements display a rich repertoire of styles and personalities. However, it is difficult to get enough examples for data-driven approaches. We propose a conditional variational autoencoder (CVAE) to combine large variations in the neutral motion database and style information from a limited number of examples.Die Synthese realistischer menschlicher Bewegungen mit großen Variationen und unterschiedlichen Stilen ist für Simulationsanwendungen wie die Spieleindustrie, psychologische Experimente und ergonomische Analysen von wachsendem Interesse. Datengetriebene Bewegungssyntheseansätze sind leistungsstarke Werkzeuge für die Erstellung realitätsgetreuer Charakteranimationen. Mit der Entwicklung von Motion-Capture-Technologien sind nun immer mehr Motion-Daten öffentlich verfügbar. Die effiziente Wiederverwendung einer großen Menge von Motion-Daten zur Erstellung neuer Bewegungen für beliebige Szenarien stellt jedoch eine Herausforderung dar, insbesondere für die unüberwachte Bewegungssynthesemethoden. Das Lernen der Verteilung von Motion-Daten kann eine kompakte Repräsentation von Bewegungsvariationen liefern und Bewegungssyntheseaufgaben in Optimierungsprobleme umwandeln. In dieser Dissertation werden eine Reihe von Arbeiten vorgestellt, die die Variationen menschlicher Bewegungsdaten analysieren und modellieren. Das Ziel ist es, statistische generative Modelle zu erlernen, um eine beliebige Anzahl neuer menschlicher Animationen mit reichen Variationen und Stilen zu erstellen. In unserem Bewegungssynthese-Framework werden die statistischen generativen Modelle von Bewegungscontrollern verwendet, um neue Animationen für verschiedene Szenarien zu erstellen. Die Arbeit in dieser Dissertation wird in drei Hauptkapiteln vorgestellt. Wir untersuchen zunächst, wie Variation in Bewegungsdaten dargestellt wird. Das Erlernen eines kompakten latenten Raums, der Bewegungsvariationen ausdrucksvoll enthalten kann, ist für die Modellierung von Bewegungsdaten unerlässlich. Wir schlagen einen neuartigen Ansatz zum Lernen des latenten Bewegungsraums vor, der die räumlich-zeitlichen Eigenschaften von Bewegungsdaten intrinsisch angehen kann. Zweitens stellen wir unser Morphable Graph Framework für die menschliche Bewegungsmodellierung und -synthese für Montage-Workshop- Szenarien vor. Es wurde eine Reihe von Studien durchgeführt, um statistische Bewegungsmodellierungs und syntheseansätze für komplexe Anwendungsfälle in Montagewerkstätten anzuwenden. Schließlich zeigen wir anhand einer begrenzten Anzahl von Beispielen, wie die Stilvariationen menschlicher Aktivitäten modelliertwerden können. Natürliche menschliche Bewegungen weisen ein reiches Repertoire an Stilen und Persönlichkeiten auf. Es ist jedoch schwierig, genügend Beispiele für datengetriebene Ansätze zu erhalten. Wir schlagen einen Conditional Variational Autoencoder (CVAE) vor, um große Variationen in der neutralen Bewegungsdatenbank und Stilinformationen aus einer begrenzten Anzahl von Beispielen zu kombinieren. Wir zeigen, dass unser Ansatz eine beliebige Anzahl von natürlich aussehenden Variationen menschlicher Bewegungen mit einem ähnlichen Stil wie das Ziel erzeugen kann
    corecore