138 research outputs found

    Interactive Cosegmentation Using Global and Local Energy Optimization

    Get PDF
    We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothness in a local neighborhood. This energy optimization can be converted into a constrained quadratic programming problem. To reduce the computational complexity, we propose an iterative optimization algorithm to decompose this optimization problem into several subproblems. The experimental results show that our method outperforms the state-of-the-art unsupervised cosegmentation and interactive cosegmentation methods on the iCoseg and MSRC benchmark data sets

    Interactive Cosegmentation Using Global and Local Energy Optimization

    Full text link

    A mutual GrabCut method to solve co-segmentation

    Get PDF
    Extent: 11 p.Co-segmentation aims at segmenting common objects from a group of images. Markov random field (MRF) has been widely used to solve co-segmentation, which introduces a global constraint to make the foreground similar to each other. However, it is difficult to minimize the new model. In this paper, we propose a new Markov random field-based co-segmentation model to solve co-segmentation problem without minimization problem. In our model, foreground similarity constraint is added into the unary term of MRF model rather than the global term, which can be minimized by graph cut method. In the model, a new energy function is designed by considering both the foreground similarity and the background consistency. Then, a mutual optimization approach is used to minimize the energy function. We test the proposed method on many pairs of images. The experimental results demonstrate the effectiveness of the proposed method.Zhisheng Gao, Peng Shi, Hamid Reza Karimi and Zheng Pe

    A hierarchical graph model for object cosegmentation

    Get PDF

    Online Mutual Foreground Segmentation for Multispectral Stereo Videos

    Full text link
    The segmentation of video sequences into foreground and background regions is a low-level process commonly used in video content analysis and smart surveillance applications. Using a multispectral camera setup can improve this process by providing more diverse data to help identify objects despite adverse imaging conditions. The registration of several data sources is however not trivial if the appearance of objects produced by each sensor differs substantially. This problem is further complicated when parallax effects cannot be ignored when using close-range stereo pairs. In this work, we present a new method to simultaneously tackle multispectral segmentation and stereo registration. Using an iterative procedure, we estimate the labeling result for one problem using the provisional result of the other. Our approach is based on the alternating minimization of two energy functions that are linked through the use of dynamic priors. We rely on the integration of shape and appearance cues to find proper multispectral correspondences, and to properly segment objects in low contrast regions. We also formulate our model as a frame processing pipeline using higher order terms to improve the temporal coherence of our results. Our method is evaluated under different configurations on multiple multispectral datasets, and our implementation is available online.Comment: Preprint accepted for publication in IJCV (December 2018
    • …
    corecore