9,256 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    A Genetic Algorithm Based Optimization Framework To Visualize, Evaluate, And Modify 3D Space Configurations In Desktop VR

    Get PDF
    This paper presents the design and implementation of a Desktop VR (Virtual Reality) framework for generating and evaluating Pareto-optimal alternate 3D spatial configurations using GA (genetic algorithms). The 3-tier framework involves the generation of the Pareto-optimal plans using GA which are subsequently visualized first using a Java-based 2D Interface and finally in the form of a 3D VR scene. The search spaces (function domains) are extremely large in today’s multifaceted interior design situations, and the optimization procedure involves conflicting objective functions, and limitations in the form of constraint functions. The interior space allocation problem is formulated and implemented as the ‘‘optimal configuration of artifacts’’. When using GAs, a group of Pareto-optimal solutions (Pareto set) are available for the planners and decision-makers, wherefrom one solution ought to be picked. Therefore, this study applies a tool to not only visually evaluate the plans, but also to interact with those plans to develop them further if needed. Besides enabling the optimal spatial configuration of the scene elements, this framework also facilitates evaluation and interaction via the 3D VR worlds. The framework aids the proactive exploration, analysis, and finalization of design aspects such as color, size, lighting, etc. of the various elements prior to the actual construction. The results demonstrate the robust performance of the GA and the final 3D VR environment with dynamic interactive capabilities. This final interface facilitates ‘‘GA-Compliant’’ transformations and scene modifications thereby facilitating the exploration and examination of alternative scene configurations

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A Role-Based Approach for Orchestrating Emergent Configurations in the Internet of Things

    Full text link
    The Internet of Things (IoT) is envisioned as a global network of connected things enabling ubiquitous machine-to-machine (M2M) communication. With estimations of billions of sensors and devices to be connected in the coming years, the IoT has been advocated as having a great potential to impact the way we live, but also how we work. However, the connectivity aspect in itself only accounts for the underlying M2M infrastructure. In order to properly support engineering IoT systems and applications, it is key to orchestrate heterogeneous 'things' in a seamless, adaptive and dynamic manner, such that the system can exhibit a goal-directed behaviour and take appropriate actions. Yet, this form of interaction between things needs to take a user-centric approach and by no means elude the users' requirements. To this end, contextualisation is an important feature of the system, allowing it to infer user activities and prompt the user with relevant information and interactions even in the absence of intentional commands. In this work we propose a role-based model for emergent configurations of connected systems as a means to model, manage, and reason about IoT systems including the user's interaction with them. We put a special focus on integrating the user perspective in order to guide the emergent configurations such that systems goals are aligned with the users' intentions. We discuss related scientific and technical challenges and provide several uses cases outlining the concept of emergent configurations.Comment: In Proceedings of the Second International Workshop on the Internet of Agents @AAMAS201

    Interacting Unities: An Agent-Based System

    Get PDF
    Recently architects have been inspired by Thompsonis Cartesian deformations and Waddingtonis flexible topological surface to work within a dynamic field characterized by forces. In this more active space of interactions, movement is the medium through which form evolves. This paper explores the interaction between pedestrians and their environment by regarding it as a process occurring between the two. It is hypothesized that the recurrent interaction between pedestrians and environment can lead to a structural coupling between those elements. Every time a change occurs in each one of them, as an expression of its own structural dynamics, it triggers changes to the other one. An agent-based system has been developed in order to explore that interaction, where the two interacting elements, agents (pedestrians) and environment, are autonomous units with a set of internal rules. The result is a landscape where each agent locally modifies its environment that in turn affects its movement, while the other agents respond to the new environment at a later time, indicating that the phenomenon of stigmergy is possible to take place among interactions with human analogy. It is found that it is the environmentis internal rules that determine the nature and extent of change

    Space time pixels

    Get PDF
    This paper reports the design of a networked system, the aim of which is to provide an intermediate virtual space that will establish a connection and support interaction between multiple participants in two distant physical spaces. The intention of the project is to explore the potential of the digital space to generate original social relationships between people that their current (spatial or social) position can difficultly allow the establishment of innovative connections. Furthermore, to explore if digital space can sustain, in time, low-level connections like these, by balancing between the two contradicting needs of communication and anonymity. The generated intermediate digital space is a dynamic reactive environment where time and space information of two physical places is superimposed to create a complex common ground where interaction can take place. It is a system that provides awareness of activity in a distant space through an abstract mutable virtual environment, which can be perceived in several different ways – varying from a simple dynamic background image to a common public space in the junction of two private spaces or to a fully opened window to the other space – according to the participants will. The thesis is that the creation of an intermediary environment that operates as an activity abstraction filter between several users, and selectively communicates information, could give significance to the ambient data that people unconsciously transmit to others when co-existing. It can therefore generate a new layer of connections and original interactivity patterns; in contrary to a straight-forward direct real video and sound system, that although it is functionally more feasible, it preserves the existing social constraints that limit interaction into predefined patterns
    • 

    corecore