269,550 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Law Learning in Action: An Action Learning Project to Evaluate Processes and Outcomes of using Law E-learning Objects in Social Work Education

    Get PDF
    This document reports on a research project funded by the Social Care Institute for Excellence to evaluate the processes and outcomes (for social work students and educators) of using a suite of e-learning objects within law teaching on social work degree programmes. The e-learning objects in question were published by SCIE in 2007, and those involved in their development were keen to explore how they were being used, and what their impact might be. The research, which started in 2008 and reached completion in 2010, has tracked a group of educators in 6 universities as they have engaged in a process of collaborative capacity building, through participation in a learning set designed to support their own engagement with e-learning and to develop skills in evaluating their outcomes for students. A full list of the SCIE law e-learning objects and their associated learning outcomes is given at Appendix 1

    The Data Processing Pipeline for the Herschel-HIFI Instrument

    Get PDF
    The HIFI data processing pipeline was developed to systematically process diagnostic, calibration and astronomical observations taken with the HIFI science instrumentas part of the Herschel mission. The HIFI pipeline processed data from all HIFI observing modes within the Herschel automated processing environment, as well as, within an interactive environment. A common software framework was developed to best support the use cases required by the instrument teams and by the general astronomers. The HIFI pipeline was built on top of that and was designed with a high degree of modularity. This modular design provided the necessary flexibility and extensibility to deal with the complexity of batch-processing eighteen different observing modes, to support the astronomers in the interactive analysis and to cope with adjustments necessary to improve the pipeline and the quality of the end-products. This approach to the software development and data processing effort was arrived at by coalescing the lessons learned from similar research based projects with the understanding that a degree of foresight was required given the overall length of the project. In this article, both the successes and challenges of the HIFI software development process are presented. To support future similar projects and retain experience gained lessons learned are extracted.Comment: 18 pages, 5 figure

    The TREC-2002 video track report

    Get PDF
    TREC-2002 saw the second running of the Video Track, the goal of which was to promote progress in content-based retrieval from digital video via open, metrics-based evaluation. The track used 73.3 hours of publicly available digital video (in MPEG-1/VCD format) downloaded by the participants directly from the Internet Archive (Prelinger Archives) (internetarchive, 2002) and some from the Open Video Project (Marchionini, 2001). The material comprised advertising, educational, industrial, and amateur films produced between the 1930's and the 1970's by corporations, nonprofit organizations, trade associations, community and interest groups, educational institutions, and individuals. 17 teams representing 5 companies and 12 universities - 4 from Asia, 9 from Europe, and 4 from the US - participated in one or more of three tasks in the 2001 video track: shot boundary determination, feature extraction, and search (manual or interactive). Results were scored by NIST using manually created truth data for shot boundary determination and manual assessment of feature extraction and search results. This paper is an introduction to, and an overview of, the track framework - the tasks, data, and measures - the approaches taken by the participating groups, the results, and issues regrading the evaluation. For detailed information about the approaches and results, the reader should see the various site reports in the final workshop proceedings

    Evaluation Strategy for the Re-Development of the Displays and Visitor Facilities at the Museum and Art Gallery, Kelvingrove

    Get PDF
    No abstract available

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    • 

    corecore