387 research outputs found

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    The Interdisciplinary Research of Virtual Recovery and Simulation of Heritage Buildings. Take Lingzhao Xuan in the Palace Museum as an Example

    Get PDF
    Due to natural disasters, economic development, tourism development and other factors, many precious heritage buildings have been in endangered situation. How to protect, research and develop these heritage resources effectively has become very urgent and important. Three-dimensional (3D) digital technology plays a more and more important role in protecting and using cultural heritage. The article will take the synthetic study on the mode of virtual construction, recovery, simulation and exhibition of Lingzhao Xuan (a heritage building which stopped construction for some reason in the Palace Museum) as an example to explore and summary an effective interdisciplinary cooperation mode. Besides, we broaden and deepen the concept of “virtual recovery”, and add the concept “virtual simulation” by means of virtual design and the new achievements which are created by such mode for the first time. This research is aimed to provide reference for the standard application of 3D digital technology and perfect the protection work of heritage buildings

    Towards Zero-Waste Furniture Design

    Get PDF
    In traditional design, shapes are first conceived, and then fabricated. While this decoupling simplifies the design process, it can result in inefficient material usage, especially where off-cut pieces are hard to reuse. The designer, in absence of explicit feedback on material usage remains helpless to effectively adapt the design -- even though design variabilities exist. In this paper, we investigate {\em waste minimizing furniture design} wherein based on the current design, the user is presented with design variations that result in more effective usage of materials. Technically, we dynamically analyze material space layout to determine {\em which} parts to change and {\em how}, while maintaining original design intent specified in the form of design constraints. We evaluate the approach on simple and complex furniture design scenarios, and demonstrate effective material usage that is difficult, if not impossible, to achieve without computational support

    Variational geometric modeling with black box constraints and DAGs

    Get PDF
    CAD modelers enable designers to construct complex 3D shapes with high-level B-Rep operators. This avoids the burden of low level geometric manipulations. However a gap still exists between the shape that the designers have in mind and the way they have to decompose it into a sequence of modeling steps. To bridge this gap, Variational Modeling enables designers to specify constraints the shape must respect. The constraints are converted into an explicit system of mathematical equations (potentially with some inequalities) which the modeler numerically solves. However, most of available programs are 2D sketchers, basically because in higher dimension some constraints may have complex mathematical expressions. This paper introduces a new approach to sketch constrained 3D shapes. The main idea is to replace explicit systems of mathematical equations with (mainly) Computer Graphics routines considered as Black Box Constraints. The obvious difficulty is that the arguments of all routines must have known numerical values. The paper shows how to solve this issue, i.e., how to solve and optimize without equations. The feasibility and promises of this approach are illustrated with the developed DECO (Deformation by Constraints) prototype.The authors would like to thank the two French Institutes Carnot ARTS and Carnot STAR for their support to this research project. Lincong Fang thanks for their support the National Natural Science Foundation of China (No. 61272300), the Zhejiang Provincial Natural Science Foundation of China (LQ13F020003) and the China Scholarship Council

    Direct modeling techniques in the conceptual design stage in immersive environments for DfA&D

    Get PDF
    Due to the fast – growing competition of the mass – products markets, companies are looking for new technologies to maximize productivity and minimize time and costs. In the perspective of Computer Aided Process Planning (CAPP), companies want to optimize fixture design and assembly planning for different goals. To meet these demands, the designers' interest in Design for Assembly and Disassembly is growing considerably and is increasingly being integrated into the CAPP. The work described in this thesis aims to exploit immersive technologies to support the design of mating elements and assembly / disassembly, by developing a data exchange flow between the immersive environment and the modeling environment that provides the high – level modeling rules, both for modeling features and for assembly relationships. The main objective of the research is to develop the capability to model and execute simple coupling commands in a virtual environment by using fast direct modeling commands. With this tool the designer can model the coupling elements, position them and modify their layout. Thanks to the physical engine embedded in the scene editor software, it is possible to take into consideration physical laws such as gravity and collision between elements. A library of predefined assembly features has been developed through the use of an external modeling engine and put into communication with the immersive interaction environment. Subsequently, the research involved the study of immersive technologies for workforce development and training of workers. The research on immersive training involved industrial case studies, such as the projection of the disassembly sequence of an industrial product on a head mounted display, and less industrial case studies, such as the manual skills development of carpenters for AEC sectors and the surgeon training in the pre – operative planning in medical field

    Conceptual free-form styling in virtual environments

    Get PDF
    This dissertation introduces the tools for designing complete models from scratch directly in a head-tracked, table-like virtual work environment. The models consist of free-form surfaces, and are constructed by drawing a network of curves directly in space. This is accomplished by using a tracked pen-like input device. Interactive deformation tools for curves and surfaces are proposed and are based on variational methods. By aligning the model with the left hand, editing is made possible with the right hand, corresponding to a natural distribution of tasks using both hands. Furthermore, in the emerging field of 3D interaction in virtual environments, particularly with regard to system control, this work uses novel methods to integrate system control tasks, such as selecting tools, and workflow of shape design. The aim of this work is to propose more suitable user interfaces to computersupported conceptual shape design applications. This would be beneficial since it is a field that lacks adequate support from standard desktop systems.Diese Dissertation beschreibtWerkzeuge zum Entwurf kompletter virtueller Modelle von Grund auf. Dies geschieht direkt in einer tischartigen, virtuellen Arbeitsumge-bung mit Hilfe von Tracking der Hände und der Kopfposition. Die Modelle sind aus Freiformlächen aufgebaut und werden als Netz von Kurven mit Hilfe eines getrack-ten, stiftartigen Eingabegerätes direkt im Raum gezeichnet. Es werden interaktive Deformationswerkzeuge für Kurven und Flächen vorgestellt, die auf Methoden des Variational Modeling basieren. Durch das Ausrichten des Modells mit der linken Hand wird das Editieren mit der rechten Hand erleichtert. Dies entspricht einer natürlichen Aufteilung von Aufgaben auf beide Hände. Zusätzlich stellt diese Arbeit neue Techniken für die 3D-Interaktion in virtuellen Umgebungen, insbesondere im Bereich Anwendungskontrolle, vor, die die Aufgabe der Werkzeugauswahl in den Arbeitsablauf der Formgestaltung integrieren. Das Ziel dieser Arbeit ist es, besser geeignete Schnittstellen für den computer-unterstützten, konzeptionellen Formentwurf zur Verfügung zu stellen; ein Gebiet, für das Standard-Desktop-Systeme wenig geeignete Unterstützung bieten

    Conceptual free-form styling in virtual environments

    Get PDF
    This dissertation introduces the tools for designing complete models from scratch directly in a head-tracked, table-like virtual work environment. The models consist of free-form surfaces, and are constructed by drawing a network of curves directly in space. This is accomplished by using a tracked pen-like input device. Interactive deformation tools for curves and surfaces are proposed and are based on variational methods. By aligning the model with the left hand, editing is made possible with the right hand, corresponding to a natural distribution of tasks using both hands. Furthermore, in the emerging field of 3D interaction in virtual environments, particularly with regard to system control, this work uses novel methods to integrate system control tasks, such as selecting tools, and workflow of shape design. The aim of this work is to propose more suitable user interfaces to computersupported conceptual shape design applications. This would be beneficial since it is a field that lacks adequate support from standard desktop systems.Diese Dissertation beschreibtWerkzeuge zum Entwurf kompletter virtueller Modelle von Grund auf. Dies geschieht direkt in einer tischartigen, virtuellen Arbeitsumge-bung mit Hilfe von Tracking der Hände und der Kopfposition. Die Modelle sind aus Freiformlächen aufgebaut und werden als Netz von Kurven mit Hilfe eines getrack-ten, stiftartigen Eingabegerätes direkt im Raum gezeichnet. Es werden interaktive Deformationswerkzeuge für Kurven und Flächen vorgestellt, die auf Methoden des Variational Modeling basieren. Durch das Ausrichten des Modells mit der linken Hand wird das Editieren mit der rechten Hand erleichtert. Dies entspricht einer natürlichen Aufteilung von Aufgaben auf beide Hände. Zusätzlich stellt diese Arbeit neue Techniken für die 3D-Interaktion in virtuellen Umgebungen, insbesondere im Bereich Anwendungskontrolle, vor, die die Aufgabe der Werkzeugauswahl in den Arbeitsablauf der Formgestaltung integrieren. Das Ziel dieser Arbeit ist es, besser geeignete Schnittstellen für den computer-unterstützten, konzeptionellen Formentwurf zur Verfügung zu stellen; ein Gebiet, für das Standard-Desktop-Systeme wenig geeignete Unterstützung bieten

    Towards a better integration of modelers and black box constraint solvers within the Product Design Process

    Get PDF
    This paper presents a new way of interaction between modelers and solvers to support the Product Development Process (PDP). The proposed approach extends the functionalities and the power of the solvers by taking into account procedural constraints. A procedural constraint requires calling a procedure or a function of the modeler. This procedure performs a series of actions and geometric computations in a certain order. The modeler calls the solver for solving a main problem, the solver calls the modeler’s procedures, and similarly procedures of the modeler can call the solver for solving sub-problems. The features, specificities, advantages and drawbacks of the proposed approach are presented and discussed. Several examples are also provided to illustrate this approach

    Exploring 3D Data Reuse and Repurposing through Procedural Modeling

    Get PDF
    Most contemporary 3D data used in archaeological research and heritage management have been created through ‘reality capture,’ the recording of the physical features of extant archaeological objects, structures, and landscapes using technologies such as laser scanning and photogrammetry (Garstki 2020, ch.2; Magnani et al. 2020). A smaller quantity of data are generated by Computer Aided Design (CAD) and Building Information Modeling (BIM) projects, and even fewer data are generated through procedural modeling, the rapid prototyping of multi-component threedimensional (3D) models from a set of rules (Figure 8.1.). It is unsurprising therefore that in archaeology and heritage, efforts around digital 3D data preservation and accessibility have concentrated on high-resolution 3D data produced through scanning and image-based techniques (Hardesty et al. 2020; Richards-Rissetto and von Schwerin 2017). Establishing best practices, cultivating a community of experts, and developing infrastructure for this kind of 3D data in the archaeological and cultural heritage domains have been the focus of several coordinated efforts in Europe over the past decade (Fresa et al. 2015, Remondino and Campana 2014, Taylor and Gibson 2017, Vecchio et al. 2015). A series of European projects including 3D-COFORM, CARARE, and their successor projects, made particularly notable contributions (D’Andrea et al. 2013, Kuroczyski et al. 2014, Papatheodorou et al. 2011, Pitzalis et al. 2011, Remondino and Campana 2014). These projects were primarily oriented toward 3D data captured as part of conservation and heritage management work. Issues of preservation, accuracy, fidelity, access, and associated ethical issues of ownership, stewardship, contextualization, and interpretation were, appropriately, the center of extended disciplinary debates (for example, Magnani et al. 2018, Santana Quintero et al. 2019, Ulguim 2018; and more broadly on digital ethics Dennis 2020 and Richardson 2018). File size, geometric complexity, the diversity of ‘standard’ formats, evolving platforms for delivery, and presentation online posed challenges that continue to re-emerge today (for example, Digital Lab Notebook http://culturalheritageimaging.org/ Technologies/Digital_Lab_Notebook/, Jensen 2018a, Koutsoudis et al. 2020, Münster et al. 2016, Rahaman et al. 2019, Rourk 2019). To these efforts, heritage practitioners working in the context of architecture and urban development communities added workflows and tools designed to make CAD- and BIM-produced 3D models FAIR (Findable, Accessible, Interoperable, and Reusable). Such work provides a foundation for broader efforts to make data in 3D digital archaeology and heritage FAIR (Apollonio et al. 2012, Leventhal 2018, Pocobelli et al. 2018, Saygi et al. 2013, Wilkinson et al. 2016). These CAD and BIM projects also advanced the development of archaeological information infrastructures and workflows for 3D data by incorporating more extensive use of paradata, while also grappling with issues of uncertainty and intellectual transparency in the interpretive modeling process (Bentkowska-Kafel et al. 2012, Denard 2012). In contrast, procedural modeling’s geometrically simple, lego-like 3D models have received little attention from the community concerned with digital 3D infrastructures, standards, and practices (Coelho et al. 2020). Various sectors employ the approach to create multiple virtual reconstructions (simulations) and to explore alternative constructions and arrangements with varying properties. These multiple, nesting-doll reconstructions redeploy components such as buildings in different arrangements according to diverse rules (Figure 8.1.). In archaeology, they have been used to investigate ancient Roman, Greek, Egyptian, and Maya cities in connection with core research questions about the emergence, character, and experience of urban life (Dylla et al. 2009, Fanini and Ferdani 2011, Kitsakis et al. 2017, Piccoli 2014, 2016, 2018, Richards- Rissetto and Plessing 2015, Saldana 2014, Saldana and Johanson 2013, Sullivan 2017, 2020)
    corecore