124 research outputs found

    Light fountain – a virtually enhanced stone sculpture

    Get PDF
    The article describes the making of an art piece combining stone sculp- ture and digital fluidity. The motivation for this simulation was to enrich the usual static format of a stone sculpture with a dynamic dimension. Such digitally enriched sculpture should resemble water droplets running over the stone surface while obeying physical laws. The 3D surface of a specially designed and carved stone sculpture is continuously captured by the Kinect range sensor. Each water drop out of many thousands, which are introduced as rain drops falling evenly distributed over the sculpture, are simulated individually to run over the stone following the maximal gradient of the 3D surface. These simulated water drops are then projected as light points with a video projector on the surface of the sculpture. An admirer can enjoy the haptic experience of touching the stone surface while observing a digitally generated but physically grounded ever-shifting fluidity

    Light fountain – a virtually enhanced stone sculpture

    Get PDF
    The article describes the making of an art piece combining stone sculp- ture and digital fluidity. The motivation for this simulation was to enrich the usual static format of a stone sculpture with a dynamic dimension. Such digitally enriched sculpture should resemble water droplets running over the stone surface while obeying physical laws. The 3D surface of a specially designed and carved stone sculpture is continuously captured by the Kinect range sensor. Each water drop out of many thousands, which are introduced as rain drops falling evenly distributed over the sculpture, are simulated individually to run over the stone following the maximal gradient of the 3D surface. These simulated water drops are then projected as light points with a video projector on the surface of the sculpture. An admirer can enjoy the haptic experience of touching the stone surface while observing a digitally generated but physically grounded ever-shifting fluidity

    Light fountain – a virtually enhanced stone sculpture

    Get PDF
    The article describes the making of an art piece combining stone sculp- ture and digital fluidity. The motivation for this simulation was to enrich the usual static format of a stone sculpture with a dynamic dimension. Such digitally enriched sculpture should resemble water droplets running over the stone surface while obeying physical laws. The 3D surface of a specially designed and carved stone sculpture is continuously captured by the Kinect range sensor. Each water drop out of many thousands, which are introduced as rain drops falling evenly distributed over the sculpture, are simulated individually to run over the stone following the maximal gradient of the 3D surface. These simulated water drops are then projected as light points with a video projector on the surface of the sculpture. An admirer can enjoy the haptic experience of touching the stone surface while observing a digitally generated but physically grounded ever-shifting fluidity

    Electronic Imaging & the Visual Arts. EVA 2013 Florence

    Get PDF
    Important Information Technology topics are presented: multimedia systems, data-bases, protection of data, access to the content. Particular reference is reserved to digital images (2D, 3D) regarding Cultural Institutions (Museums, Libraries, Palace – Monuments, Archaeological Sites). The main parts of the Conference Proceedings regard: Strategic Issues, EC Projects and Related Networks & Initiatives, International Forum on “Culture & Technology”, 2D – 3D Technologies & Applications, Virtual Galleries – Museums and Related Initiatives, Access to the Culture Information. Three Workshops are related to: International Cooperation, Innovation and Enterprise, Creative Industries and Cultural Tourism

    Electronic Imaging & the Visual Arts. EVA 2012 Florence

    Get PDF
    The key aim of this Event is to provide a forum for the user, supplier and scientific research communities to meet and exchange experiences, ideas and plans in the wide area of Culture & Technology. Participants receive up to date news on new EC and international arts computing & telecommunications initiatives as well as on Projects in the visual arts field, in archaeology and history. Working Groups and new Projects are promoted. Scientific and technical demonstrations are presented

    Digital Techniques for Documenting and Preserving Cultural Heritage

    Get PDF
    In this unique collection the authors present a wide range of interdisciplinary methods to study, document, and conserve material cultural heritage. The methods used serve as exemplars of best practice with a wide variety of cultural heritage objects having been recorded, examined, and visualised. The objects range in date, scale, materials, and state of preservation and so pose different research questions and challenges for digitization, conservation, and ontological representation of knowledge. Heritage science and specialist digital technologies are presented in a way approachable to non-scientists, while a separate technical section provides details of methods and techniques, alongside examples of notable applications of spatial and spectral documentation of material cultural heritage, with selected literature and identification of future research. This book is an outcome of interdisciplinary research and debates conducted by the participants of the COST Action TD1201, Colour and Space in Cultural Heritage, 2012–16 and is an Open Access publication available under a CC BY-NC-ND licence.https://scholarworks.wmich.edu/mip_arc_cdh/1000/thumbnail.jp

    VR Technologies in Cultural Heritage

    Get PDF
    This open access book constitutes the refereed proceedings of the First International Conference on VR Technologies in Cultural Heritage, VRTCH 2018, held in Brasov, Romania in May 2018. The 13 revised full papers along with the 5 short papers presented were carefully reviewed and selected from 21 submissions. The papers of this volume are organized in topical sections on data acquisition and modelling, visualization methods / audio, sensors and actuators, data management, restoration and digitization, cultural tourism

    Digital Techniques for Documenting and Preserving Cultural Heritage

    Get PDF
    This book presents interdisciplinary approaches to the examination and documentation of material cultural heritage, using non-invasive spatial and spectral optical technologies

    3D photogrammetric data modeling and optimization for multipurpose analysis and representation of Cultural Heritage assets

    Get PDF
    This research deals with the issues concerning the processing, managing, representation for further dissemination of the big amount of 3D data today achievable and storable with the modern geomatic techniques of 3D metric survey. In particular, this thesis is focused on the optimization process applied to 3D photogrammetric data of Cultural Heritage assets. Modern Geomatic techniques enable the acquisition and storage of a big amount of data, with high metric and radiometric accuracy and precision, also in the very close range field, and to process very detailed 3D textured models. Nowadays, the photogrammetric pipeline has well-established potentialities and it is considered one of the principal technique to produce, at low cost, detailed 3D textured models. The potentialities offered by high resolution and textured 3D models is today well-known and such representations are a powerful tool for many multidisciplinary purposes, at different scales and resolutions, from documentation, conservation and restoration to visualization and education. For example, their sub-millimetric precision makes them suitable for scientific studies applied to the geometry and materials (i.e. for structural and static tests, for planning restoration activities or for historical sources); their high fidelity to the real object and their navigability makes them optimal for web-based visualization and dissemination applications. Thanks to the improvement made in new visualization standard, they can be easily used as visualization interface linking different kinds of information in a highly intuitive way. Furthermore, many museums look today for more interactive exhibitions that may increase the visitors’ emotions and many recent applications make use of 3D contents (i.e. in virtual or augmented reality applications and through virtual museums). What all of these applications have to deal with concerns the issue deriving from the difficult of managing the big amount of data that have to be represented and navigated. Indeed, reality based models have very heavy file sizes (also tens of GB) that makes them difficult to be handled by common and portable devices, published on the internet or managed in real time applications. Even though recent advances produce more and more sophisticated and capable hardware and internet standards, empowering the ability to easily handle, visualize and share such contents, other researches aim at define a common pipeline for the generation and optimization of 3D models with a reduced number of polygons, however able to satisfy detailed radiometric and geometric requests. iii This thesis is inserted in this scenario and focuses on the 3D modeling process of photogrammetric data aimed at their easy sharing and visualization. In particular, this research tested a 3D models optimization, a process which aims at the generation of Low Polygons models, with very low byte file size, processed starting from the data of High Poly ones, that nevertheless offer a level of detail comparable to the original models. To do this, several tools borrowed from the game industry and game engine have been used. For this test, three case studies have been chosen, a modern sculpture of a contemporary Italian artist, a roman marble statue, preserved in the Civic Archaeological Museum of Torino, and the frieze of the Augustus arch preserved in the city of Susa (Piedmont- Italy). All the test cases have been surveyed by means of a close range photogrammetric acquisition and three high detailed 3D models have been generated by means of a Structure from Motion and image matching pipeline. On the final High Poly models generated, different optimization and decimation tools have been tested with the final aim to evaluate the quality of the information that can be extracted by the final optimized models, in comparison to those of the original High Polygon one. This study showed how tools borrowed from the Computer Graphic offer great potentialities also in the Cultural Heritage field. This application, in fact, may meet the needs of multipurpose and multiscale studies, using different levels of optimization, and this procedure could be applied to different kind of objects, with a variety of different sizes and shapes, also on multiscale and multisensor data, such as buildings, architectural complexes, data from UAV surveys and so on
    • …
    corecore