570 research outputs found

    Design and Development of a Multi-Sided Tabletop Augmented Reality 3D Display Coupled with Remote 3D Imaging Module

    Get PDF
    This paper proposes a tabletop augmented reality (AR) 3D display paired with a remote 3D image capture setup that can provide three-dimensional AR visualization of remote objects or persons in real-time. The front-side view is presented in stereo-3D format, while the left-side and right-side views are visualized in 2D format. Transparent glass surfaces are used to demonstrate the volumetric 3D augmentation of the captured object. The developed AR display prototype mainly consists of four 40 × 30 cm2 LCD panels, 54% partially reflective glass, an in-house developed housing assembly, and a processing unit. The capture setup consists of four 720p cameras to capture the front-side stereo view and both the left- and right-side views. The real-time remote operation is demonstrated by connecting the display and imaging units through the Internet. Various system characteristics, such as range of viewing angle, stereo crosstalk, polarization perseverance, frame rate, and amount of reflected and transmitted light through partially reflective glass, were examined. The demonstrated system provided 35% optical transparency and less than 4% stereo crosstalk within a viewing angle of ±20 degrees. An average frame rate of 7.5 frames per second was achieved when the resolution per view was 240 × 240 pixels

    Design and Development of a Multi-Sided Tabletop Augmented Reality 3D Display Coupled with Remote 3D Imaging Module

    Get PDF
    This paper proposes a tabletop augmented reality (AR) 3D display paired with a remote 3D image capture setup that can provide three-dimensional AR visualization of remote objects or persons in real-time. The front-side view is presented in stereo-3D format, while the left-side and right-side views are visualized in 2D format. Transparent glass surfaces are used to demonstrate the volumetric 3D augmentation of the captured object. The developed AR display prototype mainly consists of four 40 × 30 cm2 LCD panels, 54% partially reflective glass, an in-house developed housing assembly, and a processing unit. The capture setup consists of four 720p cameras to capture the front-side stereo view and both the left- and right-side views. The real-time remote operation is demonstrated by connecting the display and imaging units through the Internet. Various system characteristics, such as range of viewing angle, stereo crosstalk, polarization perseverance, frame rate, and amount of reflected and transmitted light through partially reflective glass, were examined. The demonstrated system provided 35% optical transparency and less than 4% stereo crosstalk within a viewing angle of ±20 degrees. An average frame rate of 7.5 frames per second was achieved when the resolution per view was 240 × 240 pixels

    Empirical Comparisons of Virtual Environment Displays

    Get PDF
    There are many different visual display devices used in virtual environment (VE) systems. These displays vary along many dimensions, such as resolution, field of view, level of immersion, quality of stereo, and so on. In general, no guidelines exist to choose an appropriate display for a particular VE application. Our goal in this work is to develop such guidelines on the basis of empirical results. We present two initial experiments comparing head-mounted displays with a workbench display and a foursided spatially immersive display. The results indicate that the physical characteristics of the displays, users' prior experiences, and even the order in which the displays are presented can have significant effects on performance

    Integral imaging-based tabletop light field 3D display with large viewing angle

    Get PDF
    Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays. Tabletop light field 3D display provides a brand-new display form that satisfies multi-user shared viewing and collaborative works, and it is poised to become a potential alternative to the traditional wall and portable display forms. However, a large radial viewing angle and correct radial perspective and parallax are still out of reach for most current tabletop light field 3D displays due to the limited amount of spatial information. To address the viewing angle and perspective issues, a novel integral imaging-based tabletop light field 3D display with a simple flat-panel structure is proposed and developed by applying a compound lens array, two spliced 8K liquid crystal display panels, and a light shaping diffuser screen. The compound lens array is designed to be composed of multiple three-piece compound lens units by employing a reverse design scheme, which greatly extends the radial viewing angle in the case of a limited amount of spatial information and balances other important 3D display parameters. The proposed display has a radial viewing angle of 68.7° in a large display size of 43.5 inches, which is larger than the conventional tabletop light field 3D displays. The radial perspective and parallax are correct, and high-resolution 3D images can be reproduced in large radial viewing positions. We envision that this proposed display opens up possibility for redefining the display forms of consumer electronics

    Roadmap on 3D integral imaging: Sensing, processing, and display

    Get PDF
    This Roadmap article on three-dimensional integral imaging provides an overview of some of the research activities in the field of integral imaging. The article discusses various aspects of the field including sensing of 3D scenes, processing of captured information, and 3D display and visualization of information. The paper consists of a series of 15 sections from the experts presenting various aspects of the field on sensing, processing, displays, augmented reality, microscopy, object recognition, and other applications. Each section represents the vision of its author to describe the progress, potential, vision, and challenging issues in this field

    An evaluation of the Microsoft HoloLens for a manufacturing-guided assembly task

    Get PDF
    Many studies have confirmed the benefits of using Augmented Reality (AR) work instructions over traditional digital or paper instructions, but few have compared the effects of different AR hardware for complex assembly tasks. For this research, previously published data using Desktop Model Based Instructions (MBI), Tablet MBI, and Tablet AR instructions were compared to new assembly data collected using AR instructions on the Microsoft HoloLens Head Mounted Display (HMD). Participants completed a mock wing assembly task, and measures like completion time, error count, Net Promoter Score, and qualitative feedback were recorded. The HoloLens condition yielded faster completion times than all other conditions. HoloLens users also had lower error rates than those who used the non-AR conditions. Despite the performance benefits of the HoloLens AR instructions, users of this condition reported lower net promoter scores than users of the Tablet AR instructions. The qualitative data showed that some users thought the HoloLens device was uncomfortable and that the tracking was not always exact. Although the user feedback favored the Tablet AR condition, the HoloLens condition resulted in significantly faster assembly times. As a result, it is recommended to use the HoloLens for complex guided assembly instructions with minor changes, such as allowing the user to toggle the AR instructions on and off at will. The results of this paper can help manufacturing stakeholders better understand the benefits of different AR technology for manual assembly tasks

    Situated Displays in Telecommunication

    Get PDF
    In face to face conversation, numerous cues of attention, eye contact, and gaze direction provide important channels of information. These channels create cues that include turn taking, establish a sense of engagement, and indicate the focus of conversation. However, some subtleties of gaze can be lost in common videoconferencing systems, because the single perspective view of the camera doesn't preserve the spatial characteristics of the face to face situation. In particular, in group conferencing, the `Mona Lisa effect' makes all observers feel that they are looked at when the remote participant looks at the camera. In this thesis, we present designs and evaluations of four novel situated teleconferencing systems, which aim to improve the teleconferencing experience. Firstly, we demonstrate the effectiveness of a spherical video telepresence system in that it allows a single observer at multiple viewpoints to accurately judge where the remote user is placing their gaze. Secondly, we demonstrate the gaze-preserving capability of a cylindrical video telepresence system, but for multiple observers at multiple viewpoints. Thirdly, we demonstrated the further improvement of a random hole autostereoscopic multiview telepresence system in conveying gaze by adding stereoscopic cues. Lastly, we investigate the influence of display type and viewing angle on how people place their trust during avatar-mediated interaction. The results show the spherical avatar telepresence system has the ability to be viewed qualitatively similarly from all angles and demonstrate how trust can be altered depending on how one views the avatar. Together these demonstrations motivate the further study of novel display configurations and suggest parameters for the design of future teleconferencing systems
    • …
    corecore