1,049 research outputs found

    Overlapping neural endophenotypes in addiction and obesity

    Get PDF
    Impulsivity refers to a tendency to act rapidly without full consideration of consequences. The trait is thought to result from the interaction between high arousal responses to potential rewards and poor self-control. Studies have suggested that impulsivity confers vulnerability to both addiction and obesity. However, results in this area are unclear, perhaps due to the high phenotypic complexity of addictions and obesity. Focusing on impulsivity, the aim of this review is to tackle the putative overlaps between addiction and obesity in four domains: (1) personality research, (2) neurocognitive tasks, (3) brain imaging, and (4) clinical evidence. We suggest that three impulsivity-related domains are particularly relevant for our understanding of similarities between addiction and obesity: lower self-control (high Disinhibition/low Conscientiousness), reward sensitivity (high Extraversion/Positive Emotionality), and negative affect (high Neuroticism/Negative Emotionality). Neurocognitive studies have shown that obesity and addiction are both associated with increased impulsive decision-making and attention bias in response to drug or food cues, respectively. Mirroring this, obesity and different forms of addiction seem to exhibit similar alterations in functional MRI brain activity in response to reward processing and during self-control tasks. Overall, our review provides an integrative approach to understand those facets of obesity that present similarities to addictive behaviors. In addition, we suggest that therapeutic interventions targeting inhibitory control may represent a promising approach for the prevention and/or treatment of obesity

    Interactions between metabolic, reward and cognitive processes in appetite control:Implications for novel weight management therapies

    Get PDF
    Traditional models of appetite control have emphasised the role of parallel homeostatic and hedonic systems, but more recently the distinction between independent homeostatic and hedonic systems has been abandoned in favour of a framework that emphasises the cross talk between the neurochemical substrates of the two systems. In addition, evidence has emerged more recently, that higher level cognitive functions such as learning, memory and attention play an important role in everyday appetite control and that homeostatic signals also play a role in cognition. Here, we review this evidence and present a comprehensive model of the control of appetite that integrates cognitive, homeostatic and reward mechanisms. We discuss the implications of this model for understanding the factors that may contribute to disordered patterns of eating and suggest opportunities for developing more effective treatment approaches for eating disorders and weight management

    Food addiction: Implications for the diagnosis and treatment of overeating

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. With the obesity epidemic being largely attributed to overeating, much research has been aimed at understanding the psychological causes of overeating and using this knowledge to develop targeted interventions. Here, we review this literature under a model of food addiction and present evidence according to the fifth edition of the Diagnostic and Statistical Manual (DSM-5) criteria for substance use disorders. We review several innovative treatments related to a food addiction model ranging from cognitive intervention tasks to neuromodulation techniques. We conclude that there is evidence to suggest that, for some individuals, food can induce addictive-type behaviours similar to those seen with other addictive substances. However, with several DSM-5 criteria having limited application to overeating, the term ‘food addiction’ is likely to apply only in a minority of cases. Nevertheless, research investigating the underlying psychological causes of overeating within the context of food addiction has led to some novel and potentially effective interventions. Understanding the similarities and differences between the addictive characteristics of food and illicit substances should prove fruitful in further developing these interventions.Biotechnology and Biological Sciences Research CouncilEuropean Research Counci

    Cognitive Control of Eating:the Role of Memory in Appetite and Weight Gain

    Get PDF

    Obesity, body weight regulation and the brain: Insights from fMRI

    Get PDF
    Obesity constitutes a major global health threat. Despite the success of bariatric surgery in delivering sustainable weight loss and improvement in obesity-related morbidity, effective non-surgical treatments are urgently needed, necessitating an increased understanding of body weight regulation. Neuroimaging studies undertaken in people with healthy weight, overweight, obesity and following bariatric surgery have contributed to identifying the neurophysiological changes seen in obesity and are increasing our understanding of the mechanisms driving the favourable eating behaviour changes and sustained weight loss engendered by bariatric surgery. These studies have revealed a key interplay between peripheral metabolic signals, homeostatic and hedonic brain regions and genetics. Findings from brain functional magnetic resonance imaging (fMRI) studies have consistently associated obesity with an increased motivational drive to eat, increased reward responses to food cues and impaired food-related self-control processes. Interestingly, new data link these obesity-associated changes with structural and connectivity changes within the central nervous system. Moreover, emerging data suggest that bariatric surgery leads to neuroplastic recovery. A greater understanding of the interactions between peripheral signals of energy balance, the neural substrates that regulate eating behaviour, the environment and genetics will be key for the development of novel therapeutic strategies for obesity. This review provides an overview of our current understanding of the pathoaetiology of obesity with a focus upon the role that fMRI studies have played in enhancing our understanding of central regulation of eating behaviour and energy homeostasis

    Challenge 2: From genes & circuits to behavior

    Get PDF
    Understanding the brain from genes and circuits to behavior is a major scientific challenge. The large repertoire of cell activities supporting behavior stems from an equally diverse range of specialized cell types, from neuron to glia. To untangle mechanisms underlying brain function, elementary processes should be dissected, from the complex machinery of signaling pathways at the level of single cells and synapses, to the intricate phenomena leading to orchestrated ensemble activity and the establishment of engrams driving memory-guided behaviors. In this chapter we identify the main key tasks required to address some of the open questions in the field, and discuss on the main issues and strategies
    corecore