2,032 research outputs found

    The challenges of purely mechanistic models in biology and the minimum need for a 'mechanism-plus-X' framework

    Get PDF
    Ever since the advent of molecular biology in the 1970s, mechanical models have become the dogma in the field, where a "true" understanding of any subject is equated to a mechanistic description. This has been to the detriment of the biomedical sciences, where, barring some exceptions, notable new feats of understanding have arguably not been achieved in normal and disease biology, including neurodegenerative disease and cancer pathobiology. I argue for a "mechanism-plus-X" paradigm, where mainstay elements of mechanistic models such as hierarchy and correlation are combined with nomological principles such as general operative rules and generative principles. Depending on the question at hand and the nature of the inquiry, X could range from proven physical laws to speculative biological generalizations, such as the notional principle of cellular synchrony. I argue that the "mechanism-plus-X" approach should ultimately aim to move biological inquiries out of the deadlock of oft-encountered mechanistic pitfalls and reposition biology to its former capacity of illuminating fundamental truths about the world

    Causality Is Logically Definable-Toward an Equilibrium-Based Computing Paradigm of Quantum Agents and Quantum Intelligence (QAQI)

    Get PDF
    A survey on agents, causality and intelligence is presented and an equilibrium-based computing paradigm of quantum agents and quantum intelligence (QAQI) is proposed. In the survey, Aristotle’s causality principle and its historical extensions by David Hume, Bertrand Russell, Lotfi Zadeh, Donald Rubin, Judea Pearl, Niels Bohr, Albert Einstein, David Bohm, and the causal set initiative are reviewed; bipolar dynamic logic (BDL) is introduced as a causal logic for bipolar inductive and deductive reasoning; bipolar quantum linear algebra (BQLA) is introduced as a causal algebra for quantum agent interaction and formation. Despite the widely held view that causality is undefinable with regularity, it is shown that equilibrium-based bipolar causality is logically definable using BDL and BQLA for causal inference in physical, social, biological, mental, and philosophical terms. This finding leads to the paradigm of QAQI where agents are modeled as quantum ensembles; intelligence is revealed as quantum intelligence. It is shown that the ensembles formation, mutation and interaction of agents can be described as direct or indirect results of quantum causality. Some fundamental laws of causation are presented for quantum agent entanglement and quantum intelligence. Applicability is illustrated; major challenges are identified in equilibrium based causal inference and quantum data mining

    Thirty years of focus on individual variability and the dynamics of processes

    Get PDF
    We fully endorse Arocha’s (2021) thesis about the fundamental importance of studying variability in real, observable processes and agree with his critique of the standard practice of psychological research. However, we regret that Arocha’s article does not acknowledge a rich body of research that has been around for almost three decades and that does exactly what Arocha recommends. This research is based on the theory of complex dynamic systems. We discuss its main implications for a research focus on concrete psychological processes, as they occur in individual cases (including real interacting groups). Variability over time is used as a main source of information about the nature of the underlying processes. Various examples of empirical studies, model building, and process-oriented methodology are discussed, and Arocha’s examples of perceptual control theory (PCT) and observation-oriented modeling (OOM) are put in the perspective of the complex dynamic systems approach, which is fully compatible with scientific realism as advocated by Arocha

    Individual Differences in Cognitive Science: Conceptual and Methodological Issues

    Get PDF
    A primary aim of cognitive science is the investigation of psychological and neuroscientific generalizations that hold across subjects. Individual differences between people’s minds and brains are pervasive, however, even among subjects considered neurotypical. In this dissertation, I argue that both scientific practice and our philosophical understanding of science must be updated to reflect the presence of such individual differences. The first half of the dissertation proposes and applies a philosophical account of what it takes to explain variation, while the second half identifies several methods in psychology and neuroscience that demand reform in light of existing individual differences

    Change Your Mind: Neuroplasticity & Buddhist Transformation

    Get PDF

    Law and Biology: Toward an Integrated Model of Human Behavior

    Get PDF
    As first year law students unhappily discover, the meaning of law is frustratingly protean, shifting by usage and user. Depending on whom you ask, law is a system of rules, a body of precedents, a legislative enactment, a collection of norms, a process by which social goals are pursued, or some dynamic mixture of these. Law\u27s principal purpose is to define and protect individual rights, to ensure public order, to resolve disputes, to redistribute wealth, to dispense justice, to prevent or compensate for injury, to optimize economic efficiency, or perhaps to do something else. And yet one thing is irreducibly clear: at its most basic, every legal system exists to effect some change in human behavior. That is, law is a lever for moving human behavior. The very obviousness of this proposition obscures its significance. The principal implication is this: law depends on a behavioral model as a lever depends on a fulcrum. Only a behavioral model, which purports to explain why people behave as they do, can suggest that if law moves this way behavior will move that way. This means that the success of every legal system necessarily depends, in part, on the solidity-that is, the accuracy and predictive power-of the behavioral model on which it rests

    PSA 2018

    Get PDF
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2018

    PSA 2018

    Get PDF
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2018
    corecore