15,672 research outputs found

    Analysis and Coordination of Mixed-Criticality Cyber-Physical Systems

    Get PDF
    A Cyber-physical System (CPS) can be described as a network of interlinked, concurrent computational components that interact with the physical world. Such a system is usually of reactive nature and must satisfy strict timing requirements to guarantee a correct behaviour. The components can be of mixed-criticality which implies different progress models and communication models, depending whether the focus of a component lies on predictability or resource efficiency. In this dissertation I present a novel approach that bridges the gap between stream processing models and Labelled Transition Systems (LTSs). The former offer powerful tools to describe concurrent systems of, usually simple, components while the latter allow to describe complex, reactive, components and their mutual interaction. In order to achieve the bridge between the two domains I introduce the novel LTS Synchronous Interface Automaton (SIA) that allows to model the interaction protocol of a process via its interface and to incrementally compose simple processes into more complex ones while preserving the system properties. Exploiting these properties I introduce an analysis to identify permanent blocking situations in a network of composed processes. SIAs are wrapped by the novel component-based coordination model Process Network with Synchronous Communication (PNSC) that allows to describe a network of concurrent processes where multiple communication models and the co-existence and interaction of heterogeneous processes is supported due to well defined interfaces. The work presented in this dissertation follows a holistic approach which spans from the theory of the underlying model to an instantiation of the model as a novel coordination language, called Streamix. The language uses network operators to compose networks of concurrent processes in a structured and hierarchical way. The work is validated by a prototype implementation of a compiler and a Run-time System (RTS) that allows to compile a Streamix program and execute it on a platform with support for ISO C, POSIX threads, and a Linux operating system

    Communications in Choreographies, Revisited

    Full text link
    Choreographic Programming is a paradigm for developing correct-by-construction concurrent programs, by writing high-level descriptions of the desired communications and then synthesising process implementations automatically. So far, choreographic programming has been explored in the monadic setting: interaction terms express point-to-point communications of a single value. However, real-world systems often rely on interactions of polyadic nature, where multiple values are communicated among two or more parties, like multicast, scatter-gather, and atomic exchanges. We introduce a new model for choreographic programming equipped with a primitive for grouped interactions that subsumes all the above scenarios. Intuitively, grouped interactions can be thought of as being carried out as one single interaction. In practice, they are implemented by processes that carry them out in a concurrent fashion. After formalising the intuitive semantics of grouped interactions, we prove that choreographic programs and their implementations are correct and deadlock-free by construction

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    Managing stimulation of regional innovation subjects’ interaction in the digital economy

    Get PDF
    The reported study was funded by RFBR according to the research project No. 18-01000204_a, No. 16-07-00031_a, No. 18-07-00975_a.Purpose: The article is devoted to solving fundamental scientific problems in the scope of the development of forecasting modeling methods and evaluation of regional company’s innovative development parameters, synthesizing new methods of big data processing and intelligent analysis, as well as methods of knowledge eliciting and forecasting the dynamics of regional innovation developments through benchmarking. Design/Methodology/Approach: For regional economic development, it is required to identify the mechanisms that contribute to (or impede) the innovative economic development of the regions. The synergetic approach to management is based on the fact that there are multiple paths of IS development (scenarios with different probabilities), although it is necessary to reach the required attractor by meeting the management goals. Findings: The present research is focused on obtainment of new knowledge in creating a technique of multi-agent search, collection and processing of data on company’s innovative development indicators, models and methods of intelligent analysis of the collected data. Practical Implications: The author developed recommendations before starting the process of institutional changes in a specific regional innovation system. The article formulates recommendations on the implementation of institutional changes in the region taking into account the sociocultural characteristics of the region’s population. Originality/Value: It is the first time, when a complex of models and methods is based on the use of a convergent model of large data volumes processing is presented.peer-reviewe

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201
    • …
    corecore