60,242 research outputs found

    Tell me, show me, involve me: Supercharging Collaborative Diagnosis with Augmented Reality

    Get PDF
    Augmented reality has been broadly employed to help remote individuals communicate and coordinate. In this study, we develop and test a model that explains how augmented reality can facilitate collaborative diagnosis on an unexpected technical breakdown involving two complete strangers. Drawing on the affordance theory, we integrate the dual-task interference literature to reveal frustration valence and arousal as the underlying mechanisms. We tested our hypothesis in a laboratory experiment involving a custom-built augmented reality environment and physiological measurements. Overall, this study contributes to information system literature, human-computer interaction literature, and dual-task interference research by unearthing the effects of augmented reality characteristics on enhancing collaborative diagnosis performance

    Second surface: multi-user spatial collaboration system based on augmented reality

    Get PDF
    An environment for creative collaboration is significant for enhancing human communication and expressive activities, and many researchers have explored different collaborative spatial interaction technologies. However, most of these systems require special equipment and cannot adapt to everyday environment. We introduce Second Surface, a novel multi-user Augmented reality system that fosters a real-time interaction for user-generated contents on top of the physical environment. This interaction takes place in the physical surroundings of everyday objects such as trees or houses. Our system allows users to place three dimensional drawings, texts, and photos relative to such objects and share this expression with any other person who uses the same software at the same spot. Second Surface explores a vision that integrates collaborative virtual spaces into the physical space. Our system can provide an alternate reality that generates a playful and natural interaction in an everyday setup

    Mobile, collaborative augmented reality using cloudlets

    Get PDF
    The evolution in mobile applications to support advanced interactivity and demanding multimedia features is still ongoing. Novel application concepts (e.g. mobile Augmented Reality (AR)) are however hindered by the inherently limited resources available on mobile platforms (not withstanding the dramatic performance increases of mobile hardware). Offloading resource intensive application components to the cloud, also known as "cyber foraging", has proven to be a valuable solution in a variety of scenarios. However, also for collaborative scenarios, in which data together with its processing are shared between multiple users, this offloading concept is highly promising. In this paper, we investigate the challenges posed by offloading collaborative mobile applications. We present a middleware platform capable of autonomously deploying software components to minimize average CPU load, while guaranteeing smooth collaboration. As a use case, we present and evaluate a collaborative AR application, offering interaction between users, the physical environment as well as with the virtual objects superimposed on this physical environment

    A comparison of immersive realities and interaction methods: cultural learning in virtual heritage

    Get PDF
    In recent years, Augmented Reality (AR), Virtual Reality (VR), Augmented Virtuality (AV), and Mixed Reality (MxR) have become popular immersive reality technologies for cultural knowledge dissemination in Virtual Heritage (VH). These technologies have been utilized for enriching museums with a personalized visiting experience and digital content tailored to the historical and cultural context of the museums and heritage sites. Various interaction methods, such as sensor-based, device-based, tangible, collaborative, multimodal, and hybrid interaction methods, have also been employed by these immersive reality technologies to enable interaction with the virtual environments. However, the utilization of these technologies and interaction methods isn’t often supported by a guideline that can assist Cultural Heritage Professionals (CHP) to predetermine their relevance to attain the intended objectives of the VH applications. In this regard, our paper attempts to compare the existing immersive reality technologies and interaction methods against their potential to enhance cultural learning in VH applications. To objectify the comparison, three factors have been borrowed from existing scholarly arguments in the Cultural Heritage (CH) domain. These factors are the technology’s or the interaction method’s potential and/or demonstrated capability to: (1) establish a contextual relationship between users, virtual content, and cultural context, (2) allow collaboration between users, and (3) enable engagement with the cultural context in the virtual environments and the virtual environment itself. Following the comparison, we have also proposed a specific integration of collaborative and multimodal interaction methods into a Mixed Reality (MxR) scenario that can be applied to VH applications that aim at enhancing cultural learning in situ

    User Interface and Interaction Design Considerations for Collaborative Learning Using Augmented Reality Learning Object

    Get PDF
    Abstract. Most education is too often about teaching and not enough about learning. It is because students are forced to take whatever it is given to them without considering what they think about it, in other words, they passively take the given knowledge. This paper presents early investigation about interface and interaction design considerations for effective collaborative learning by taking account individual learning preferences and collaborative learning characteristics of engineering students. In our investigation, we follow Felder Silverman Learning Style Model and conducted a test measured using Index Learning Style. As a result, we discovered that engineering students tend to be active, sensory, visual, and sequential. Therefore, we implement augmented reality views to satisfy students’ learning preferences toward content presentation (visual learner). It is also because augmented reality can give rich information toward real objects/environment. For collaborative characteristics, we studied past research on collaborative learning regarding its characteristics that affects learning effectiveness. Besides, our proposed design also considered the user interface principle which provides a guidance to effectively implement our consideration into an interface

    Collaborative Augmented Reality

    Get PDF
    Over the past number of years augmented reality (AR) has become an increasingly pervasive as a consumer level technology. The principal drivers of its recent development has been the evolution of mobile and handheld devices, in conjunction with algorithms and techniques from fields such as 3D computer vision. Various commercial platforms and SDKs are now available that allow developers to quickly develop mobile AR apps requiring minimal understanding of the underlying technology. Much of the focus to date, both in the research and commercial environment, has been on single user AR applications. Just as collaborative mobile applications have a demonstrated role in the increasing popularity of mobile devices, and we believe collaborative AR systems present a compelling use-case for AR technology. The aim of this thesis is the development a mobile collaborative augmented reality framework. We identify the elements required in the design and implementation stages of collaborative AR applications. Our solution enables developers to easily create multi-user mobile AR applications in which the users can cooperatively interact with the real environment in real time. It increases the sense of collaborative spatial interaction without requiring complex infrastructure. Assuming the given low level communication and AR libraries have modular structures, the proposed approach is also modular and flexible enough to adapt to their requirements without requiring any major changes

    Collaborative Augmented Reality

    Get PDF
    Over the past number of years augmented reality (AR) has become an increasingly pervasive as a consumer level technology. The principal drivers of its recent development has been the evolution of mobile and handheld devices, in conjunction with algorithms and techniques from fields such as 3D computer vision. Various commercial platforms and SDKs are now available that allow developers to quickly develop mobile AR apps requiring minimal understanding of the underlying technology. Much of the focus to date, both in the research and commercial environment, has been on single user AR applications. Just as collaborative mobile applications have a demonstrated role in the increasing popularity of mobile devices, and we believe collaborative AR systems present a compelling use-case for AR technology. The aim of this thesis is the development a mobile collaborative augmented reality framework. We identify the elements required in the design and implementation stages of collaborative AR applications. Our solution enables developers to easily create multi-user mobile AR applications in which the users can cooperatively interact with the real environment in real time. It increases the sense of collaborative spatial interaction without requiring complex infrastructure. Assuming the given low level communication and AR libraries have modular structures, the proposed approach is also modular and flexible enough to adapt to their requirements without requiring any major changes

    Using Augmented Reality as a Medium to Assist Teaching in Higher Education

    Get PDF
    In this paper we describe the use of a high-level augmented reality (AR) interface for the construction of collaborative educational applications that can be used in practice to enhance current teaching methods. A combination of multimedia information including spatial three-dimensional models, images, textual information, video, animations and sound, can be superimposed in a student-friendly manner into the learning environment. In several case studies different learning scenarios have been carefully designed based on human-computer interaction principles so that meaningful virtual information is presented in an interactive and compelling way. Collaboration between the participants is achieved through use of a tangible AR interface that uses marker cards as well as an immersive AR environment which is based on software user interfaces (UIs) and hardware devices. The interactive AR interface has been piloted in the classroom at two UK universities in departments of Informatics and Information Science

    Cross-Dimensional Gestural Interaction Techniques for Hybrid Immersive Environments

    Get PDF
    We present a set of interaction techniques for a hybrid user interface that integrates existing 2D and 3D visualization and interaction devices. Our approach is built around one- and two-handed gestures that support the seamless transition of data between co-located 2D and 3D contexts. Our testbed environment combines a 2D multi-user, multi-touch, projection surface with 3D head-tracked, see-through, head-worn displays and 3D tracked gloves to form a multi-display augmented reality. We also address some of the ways in which we can interact with private data in a collaborative, heterogeneous workspace
    • …
    corecore