2,917 research outputs found

    Quantifying perception of nonlinear elastic tissue models using multidimensional scaling

    Get PDF
    Simplified soft tissue models used in surgical simulations cannot perfectly reproduce all material behaviors. In particular, many tissues exhibit the Poynting effect, which results in normal forces during shearing of tissue and is only observed in nonlinear elastic material models. In order to investigate and quantify the role of the Poynting effect on material discrimination, we performed a multidimensional scaling (MDS) study. Participants were presented with several pairs of shear and normal forces generated by a haptic device during interaction with virtual soft objects. Participants were asked to rate the similarity between the forces felt. The selection of the material parameters – and thus the magnitude of the shear\ud and normal forces – was based on a pre-study prior to the MDS experiment. It was observed that for nonlinear elastic tissue models exhibiting the Poynting effect, MDS analysis indicated that both shear and normal forces affect user perception

    Haptic rendering for VR laparoscopic surgery simulation

    Get PDF
    Adelaide, S

    Asynchronous haptic simulation of contacting deformable objects with variable stiffness

    Get PDF
    International audienceAbstract--This paper presents a new asynchronous approach for haptic rendering of deformable objects. When stiff nonlinear deformations take place, they introduce important and rapid variations of the force sent to the user. This problem is similar to the stiff virtual wall for which a high refresh rate is required to obtain a stable haptic feedback. However, when dealing with several interacting deformable objects, it is usually impossible to simulate all objects at high rates. To address this problem we propose a quasi-static framework that allows for stable interactions of asynchronously computed deformable objects. In the proposed approach, a deformable object can be computed at high refresh rates, while the remaining deformable virtual objects remain computed at low refresh rates. Moreover, contacts and other constraints between the different objects of the virtual environment are accurately solved using a shared Linear Complementarity Problem (LCP). Finally, we demonstrate our method on two test cases: a snap-in example involving non-linear deformations and a virtual thread interacting with a deformable object

    Haptic Interactions with Virtual Reality

    Get PDF
    Many possible systems exist that could benefit from Haptic Interactions, the communication of forces between a user and a system. Robotic assisted rehabilitation, interactive Virtual Reality media, and Telerobotics are some examples. However, due to simplified interactions methods, high costs, and lack of application development tools, Haptic Interaction with Virtual Reality has not reached its full potential. As a solution towards these problems, the team created a development platform Haptic Interaction System, capable of supplying Haptic Interactions between a user and hosted simulated environment and objects, along with the tools to enhance the system and develop applications based on Haptic Interactions
    corecore