131,794 research outputs found

    A Parsing Scheme for Finding the Design Pattern and Reducing the Development Cost of Reusable Object Oriented Software

    Full text link
    Because of the importance of object oriented methodologies, the research in developing new measure for object oriented system development is getting increased focus. The most of the metrics need to find the interactions between the objects and modules for developing necessary metric and an influential software measure that is attracting the software developers, designers and researchers. In this paper a new interactions are defined for object oriented system. Using these interactions, a parser is developed to analyze the existing architecture of the software. Within the design model, it is necessary for design classes to collaborate with one another. However, collaboration should be kept to an acceptable minimum i.e. better designing practice will introduce low coupling. If a design model is highly coupled, the system is difficult to implement, to test and to maintain overtime. In case of enhancing software, we need to introduce or remove module and in that case coupling is the most important factor to be considered because unnecessary coupling may make the system unstable and may cause reduction in the system's performance. So coupling is thought to be a desirable goal in software construction, leading to better values for external software qualities such as maintainability, reusability and so on. To test this hypothesis, a good measure of class coupling is needed. In this paper, based on the developed tool called Design Analyzer we propose a methodology to reuse an existing system with the objective of enhancing an existing Object oriented system keeping the coupling as low as possible.Comment: 15 page

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Evaluation Criteria for Object-oriented Metrics

    Get PDF
    In this paper an evaluation model for object-oriented (OO) metrics is proposed. We have evaluated the existing evaluation criteria for OO metrics, and based on the observations, a model is proposed which tries to cover most of the features for the evaluation of OO metrics. The model is validated by applying it to existing OO metrics. In contrast to the other existing criteria, the proposed model is simple in implementation and includes the practical and important aspects of evaluation; hence it suitable to evaluate and validate any OO complexity metric

    Using Counts as Heuristics for the Analysis of Static Models

    Get PDF
    The upstream activities of software development are often viewed as both the most important, in terms of cost, and the yet the least understood, and most problematic, particularly in terms of satisfying customer requirements. Business process modelling is one solution that is being increasingly used in conjunction with traditional software development, often feeding in to requirements and analysis activities. In addition, research in Systems Engineering for Business Process Change, highlights the importance of modelling business processes in evolving and maintaining the legacy systems that support those processes. However, the major use of business process modelling, is to attempt to restructure the business process, in order to improve some given aspect, e.g., cost or time. This restructuring may be seen either as separate activity or as a pre-cursor to the development of systems to support the new or improved process. Hence, the analysis of these business models is vital to the improvement of the process, and as a consequence to the development of supporting software systems. Supporting this analysis is the focus of this paper. Business processes are typically described with static (diagrammatic) models. This paper proposes the use of measures (counts) to aid analysis and comparison of these static process descriptions. The proposition is illustrated by showing how measures can be applied to a commonly used process-modelling notation, Role Activity Diagrams (RADs). Heuristics for RADs are described and measures suggested which support those heuristics. An example process is used to show how a coupling measure can be used to highlight features in RADs useful to the process modeller. To fully illustrate the proposition the paper describes and applies a framework for the theoretical validation of the coupling measure. An empirical evaluation follows. This is illustrated by two case studies; the first based on the bidding process of a large telecommunications systems supplier, and the second a study of ten prototyping processes across a number of organisations. These studies found that roles of the same type exhibited similar levels of coupling across processes. Where roles did not adhere to tentative threshold values, further investigation revealed unusual circumstances or hidden behaviour. Notably, study of the prototyping roles, which exhibited the greatest variation in coupling, found that coupling was highly correlated with the size of the development team. This suggests that prototyping in large projects had a different process to that for small projects, using more mechanisms for communication. Hence, the empirical studies support the view that counts (measures) may be useful in the analysis of static process models

    Identifying Thresholds for Similarity-Based Class Cohesion (SCC) Metrics

    Get PDF
    Abstract. The object-oriented design (OOD) concept can be used to implement a quality measurement program is based on the possibility of inter-relationship between attributes and methods in the class diagram and interaction between objects on a communication diagram. The process of calculating the value of cohesion on the design of object-oriented software using Similarity-Based Class Cohesion metrics can be done by identifying the relationship between the three types of possible interaction between those methods, method-attribute, and interaction attribute-attribute. But the existence of such measurements theory is rarely used in the software development industry. This is due to there is no threshold value that is used as the limit of good or bad design. This study aims to determine the threshold of cohesion metric based on the class diagram. The result showed that the threshold of SCC metric is 0.45. 0.45 is the value that has the highest level of agreement with the design exper

    Applicability of Weyuker’s Properties on OO Metrics: Some Misunderstandings

    Get PDF
    Weyuker’s properties have been suggested as a guiding tool in identification of a good and comprehensive complexity measure by several researchers. Weyuker proposed nine properties to evaluate complexity measure for traditional programming. However, they are extensively used for evaluating object-oriented (OO) metrics, although the object-oriented features are entirely different in nature. In this paper, two recently reported OO metrics were evaluated and, based on it; the usefulness and relevance of these properties for evaluation purpose for object-oriented systems is discussed

    An empirical study of aspect-oriented metrics

    Get PDF
    Metrics for aspect-oriented software have been proposed and used to investigate the benefits and the disadvantages of crosscutting concerns modularisation. Some of these metrics have not been rigorously defined nor analytically evaluated. Also, there are few empirical data showing typical values of these metrics in aspect-oriented software. In this paper, we provide rigorous definitions, usage guidelines, analytical evaluation, and empirical data from ten open source projects, determining the value of six metrics for aspect-oriented software (lines of code, weighted operations in module, depth of inheritance tree, number of children, crosscutting degree of an aspect, and coupling on advice execution). We discuss how each of these metrics can be used to identify shortcomings in existing aspect-oriented software. (C) 2012 Elsevier B.V. All rights reserved.CNPq [140046/06-2]; Project CNPQ-PROSUL [490478/06-9]; Capes-Grices [2051-05-2]; FAPERGS [10/0470-1]; FCT MCTESinfo:eu-repo/semantics/publishedVersio

    Weighted Class Complexity: A Measure of Complexity for Object Oriented System

    Get PDF
    Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. In this paper, we propose a metric to compute the structural and cognitive complexity of class by associating a weight to the class, called as Weighted Class Complexity (WCC). On the contrary, of the other metrics used for object oriented systems, proposed metric calculates the complexity of a class due to methods and attributes in terms of cognitive weight. The proposed metric has been demonstrated with OO examples. The theoretical and practical evaluations based on the information theory have shown that the proposed metric is on ratio scale and satisfies most of the parameters required by the measurement theor
    • 

    corecore