615,624 research outputs found

    Entanglement induced by a single-mode heat environment

    Get PDF
    A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle the qubits which are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.Comment: 13pages, 3 figure

    Antiferromagnetic Order of Strongly Interacting Fermions in a Trap: Real-Space Dynamical Mean-Field Analysis

    Get PDF
    We apply Dynamical Mean-Field Theory to strongly interacting fermions in an inhomogeneous environment. With the help of this Real-Space Dynamical Mean-Field Theory (R-DMFT) we investigate antiferromagnetic states of repulsively interacting fermions with spin 1/2 in a harmonic potential. Within R-DMFT, antiferromagnetic order is found to be stable in spatial regions with total particle density close to one, but persists also in parts of the system where the local density significantly deviates from half filling. In systems with spin imbalance, we find that antiferromagnetism is gradually suppressed and phase separation emerges beyond a critical value of the spin imbalance.Comment: 4 pages 5 figures, published versio

    Decoherence in an Interacting Quantum Field Theory: The Vacuum Case

    Full text link
    We apply the decoherence formalism to an interacting scalar field theory. In the spirit of the decoherence literature, we consider a "system field" and an "environment field" that interact via a cubic coupling. We solve for the propagator of the system field, where we include the self-energy corrections due to the interaction with the environment field. In this paper, we consider an environment in the vacuum state (T=0). We show that neglecting inaccessible non-Gaussian correlators increases the entropy of the system as perceived by the observer. Moreover, we consider the effect of a changing mass of the system field in the adiabatic regime, and we find that at late times no additional entropy has been generated.Comment: 40 pages, published versio

    Control of the entanglement of a two-level atom in a dissipative cavity via a classical field

    Full text link
    We investigate the entanglement dynamics and purity of a two-level atom, which is additionally driven by a classical field, interacting with a coherent field in a dissipative environment. It is shown that the amount of entanglement and the purity of the system can be improved by controlling the classical field.Comment: 5 pages, 4 figure

    On the validity and breakdown of the Onsager symmetry in mesoscopic conductors interacting with environments

    Full text link
    We investigate magnetic-field asymmetries in the linear transport of a mesoscopic conductor interacting with its environment. Interestingly, we find that the interaction between the two systems causes an asymmetry only when the environment is out of equilibrium. We elucidate our general result with the help of a quantum dot capacitively coupled to a quantum Hall conductor and discuss the asymmetry dependence on the environment bias and induced dephasing.Comment: 4 pages, 4 figures; discussions clarified; published versio

    Toroidal qubits: naturally-decoupled quiet artificial atoms

    Get PDF
    The requirements of quantum computations impose high demands on the level of qubit protection from perturbations; in particular, from those produced by the environment. Here we propose a superconducting flux qubit design that is naturally protected from ambient noise. This decoupling is due to the qubit interacting with the electromagnetic field only through its toroidal moment, which provides an unusual qubit-field interaction

    Decoherence-assisted transport and quantum criticalities

    Get PDF
    We study the dynamics of a two-level quantum system interacting with an external environment that takes the form of an XY spin chain in the presence of an external magnetic field. While the presence of the bath itself can enhance the transition probability from the lower level to the upper level of the system, we show that this noise-assisted phenomenon is sensitive to a change of the quantum phase of the environment. The derivative of the transition probability displays a maximum in correspondence with the critical value of the applied field both in the case of isotropic and anisotropic chains
    • …
    corecore