151 research outputs found

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Cooperative strategies design based on the diversity and multiplexing tradeoff

    Get PDF
    This thesis focuses on designing wireless cooperative communication strategies that are either optimal or near-optimal in terms of the tradeoff between diversity and multiplexing gains. Starting from classical cooperative broadcast, multiple-access and relay channels with unit degree of freedom, to more general cooperative interference channels with higher degrees of freedom, properties of different network topologies are studied and their unique characteristics together with several advanced interference management techniques are exploited to design cooperative transmission strategies in order to enhance data rate, reliability or both at the same time. Moreover, various algorithms are proposed to solve practical implementation issues and performance is analyzed through both theoretical verifications and simulations

    On MU-MIMO Precoding Techniques for WiMAX

    Get PDF

    Multi-Antenna Techniques for Next Generation Cellular Communications

    Get PDF
    Future cellular communications are expected to offer substantial improvements for the pre- existing mobile services with higher data rates and lower latency as well as pioneer new types of applications that must comply with strict demands from a wider range of user types. All of these tasks require utmost efficiency in the use of spectral resources. Deploying multiple antennas introduces an additional signal dimension to wireless data transmissions, which provides a significant alternative solution against the plateauing capacity issue of the limited available spectrum. Multi-antenna techniques and the associated key enabling technologies possess unquestionable potential to play a key role in the evolution of next generation cellular systems. Spectral efficiency can be improved on downlink by concurrently serving multiple users with high-rate data connections on shared resources. In this thesis optimized multi-user multi-input multi-output (MIMO) transmissions are investigated on downlink from both filter design and resource allocation/assignment points of view. Regarding filter design, a joint baseband processing method is proposed specifically for high signal-to-noise ratio (SNR) conditions, where the necessary signaling overhead can be compensated for. Regarding resource scheduling, greedy- and genetic-based algorithms are proposed that demand lower complexity with large number of resource blocks relative to prior implementations. Channel estimation techniques are investigated for massive MIMO technology. In case of channel reciprocity, this thesis proposes an overhead reduction scheme for the signaling of user channel state information (CSI) feedback during a relative antenna calibration. In addition, a multi-cell coordination method is proposed for subspace-based blind estimators on uplink, which can be implicitly translated to downlink CSI in the presence of ideal reciprocity. Regarding non-reciprocal channels, a novel estimation technique is proposed based on reconstructing full downlink CSI from a select number of dominant propagation paths. The proposed method offers drastic compressions in user feedback reports and requires much simpler downlink training processes. Full-duplex technology can provide up to twice the spectral efficiency of conventional resource divisions. This thesis considers a full-duplex two-hop link with a MIMO relay and investigates mitigation techniques against the inherent loop-interference. Spatial-domain suppression schemes are developed for the optimization of full-duplex MIMO relaying in a coverage extension scenario on downlink. The proposed methods are demonstrated to generate data rates that closely approximate their global bounds

    Mathematical optimization techniques for resource allocation and spatial multiplexing in spectrum sharing networks

    Get PDF
    Due to introduction of smart phones with data intensive multimedia and interactive applications and exponential growth of wireless devices, there is a shortage for useful radio spectrum. Even though the spectrum has become crowded, many spectrum occupancy measurements indicate that most of the allocated spectrum is underutilised. Hence radically new approaches in terms of allocation of wireless resources are required for better utilization of radio spectrum. This has motivated the concept of opportunistic spectrum sharing or the so-called cognitive radio technology that has great potential to improve spectrum utilization. The cognitive radio technology allows an opportunistic user namely the secondary user to access the spectrum of the licensed user (known as primary user) provided that the secondary transmission does not harmfully affect the primary user. This is possible with the introduction of advanced resource allocation techniques together with the use of wireless relays and spatial diversity techniques. In this thesis, various mathematical optimization techniques have been developed for the efficient use of radio spectrum within the context of spectrum sharing networks. In particular, optimal power allocation techniques and centralised and distributed beamforming techniques have been developed. Initially, an optimization technique for subcarrier and power allocation has been proposed for an Orthogonal Frequency Division Multiple Access (OFDMA) based secondary wireless network in the presence of multiple primary users. The solution is based on integer linear programming with multiple interference leakage and transmission power constraints. In order to enhance the spectrum efficiency further, the work has been extended to allow multiple secondary users to occupy the same frequency band under a multiple-input and multiple-output (MIMO) framework. A sum rate maximization technique based on uplink-downlink duality and dirty paper coding has been developed for the MIMO based OFDMA network. The work has also been extended to handle fading scenarios based on maximization of ergodic capacity. The optimization techniques for MIMO network has been extended to a spectrum sharing network with relays. This has the advantage of extending the coverage of the secondary network and assisting the primary network in return for the use of the primary spectrum. Finally, instead of considering interference mitigation, the recently emerged concept of interference alignment has been used for the resource allocation in spectrum sharing networks. The performances of all these new algorithms have been demonstrated using MATLAB based simulation studies

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    Fast Iterative Semi-Blind Receiver for URLLC in Short-Frame Full-Duplex Systems with CFO

    Get PDF
    IEEE We propose an iterative semi-blind (ISB) receiver structure to enable ultra-reliable low-latency communications (URLLC) in short-frame full-duplex (FD) systems with carrier frequency offset (CFO). To the best of our knowledge, this is the first work to propose an integral solution to channel estimation and CFO estimation for short-frame FD systems by utilizing a single pilot. By deriving an equivalent system model with CFO included implicitly, a subspace based blind channel estimation is proposed for the initial stage, followed by CFO estimation and channel ambiguities elimination. Then refinement of channel and CFO estimates is conducted iteratively. The integer and fractional parts of CFO in the full range are estimated as a whole and in closed-form at each iteration. The proposed ISB receiver significantly outperforms the previous methods in terms of frame error rate (FER), mean square errors (MSEs) of channel estimation and CFO estimation and output signal-tointerference- and-noise ratio (SINR), while at a halved spectral overhead. Cramér-Rao lower bounds (CRLBs) are derived to verify the effectiveness of the proposed ISB receiver structure. It also demonstrates high computational efficiency as well as fast convergence speed
    corecore