4,100 research outputs found

    Inter-stimulus Interval Study for the Tactile Point-pressure Brain-computer Interface

    Full text link
    The paper presents a study of an inter-stimulus interval (ISI) influence on a tactile point-pressure stimulus-based brain-computer interface's (tpBCI) classification accuracy. A novel tactile pressure generating tpBCI stimulator is also discussed, which is based on a three-by-three pins' matrix prototype. The six pin-linear patterns are presented to the user's palm during the online tpBCI experiments in an oddball style paradigm allowing for "the aha-responses" elucidation, within the event related potential (ERP). A subsequent classification accuracies' comparison is discussed based on two ISI settings in an online tpBCI application. A research hypothesis of classification accuracies' non-significant differences with various ISIs is confirmed based on the two settings of 120 ms and 300 ms, as well as with various numbers of ERP response averaging scenarios.Comment: 4 pages, 5 figures, accepted for EMBC 2015, IEEE copyrigh

    Student Teaching and Research Laboratory Focusing on Brain-computer Interface Paradigms - A Creative Environment for Computer Science Students -

    Full text link
    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.Comment: 4 pages, 4 figures, accepted for EMBC 2015, IEEE copyrigh

    Vibration Propagation on the Skin of the Arm

    Get PDF
    Vibrotactile interfaces are an inexpensive and non-invasive way to provide performance feedback to body-machine interface users. Interfaces for the upper extremity have utilized a multi-channel approach using an array of vibration motors placed on the upper extremity. However, for successful perception of multi-channel vibrotactile feedback on the arm, we need to account for vibration propagation across the skin. If two stimuli are delivered within a small distance, mechanical propagation of vibration can lead to inaccurate perception of the distinct vibrotactile stimuli. This study sought to characterize vibration propagation across the hairy skin of the forearm. We characterized vibration propagation by measuring accelerations at various distances from a source vibration of variable intensities (100–240 Hz). Our results showed that acceleration from the source vibration was present at a distance of 4 cm at intensities \u3e150 Hz. At distances greater than 8 cm from the source, accelerations were reduced to values substantially below vibrotactile discrimination thresholds for all vibration intensities. We conclude that in future applications of vibrotactile interfaces, stimulation sites should be separated by a distance of at least 8 cm to avoid potential interference in vibration perception caused by propagating vibrations

    Electronically Switchable Sham Transcranial Magnetic Stimulation (TMS) System

    Get PDF
    Transcranial magnetic stimulation (TMS) is increasingly being used to demonstrate the causal links between brain and behavior in humans. Further, extensive clinical trials are being conducted to investigate the therapeutic role of TMS in disorders such as depression. Because TMS causes strong peripheral effects such as auditory clicks and muscle twitches, experimental artifacts such as subject bias and placebo effect are clear concerns. Several sham TMS methods have been developed, but none of the techniques allows one to intermix real and sham TMS on a trial-by-trial basis in a double-blind manner. We have developed an attachment that allows fast, automated switching between Standard TMS and two types of control TMS (Sham and Reverse) without movement of the coil or reconfiguration of the setup. We validate the setup by performing mathematical modeling, search-coil and physiological measurements. To see if the stimulus conditions can be blinded, we conduct perceptual discrimination and sensory perception studies. We verify that the physical properties of the stimulus are appropriate, and that successive stimuli do not contaminate each other. We find that the threshold for motor activation is significantly higher for Reversed than for Standard stimulation, and that Sham stimulation entirely fails to activate muscle potentials. Subjects and experimenters perform poorly at discriminating between Sham and Standard TMS with a figure-of-eight coil, and between Reverse and Standard TMS with a circular coil. Our results raise the possibility of utilizing this technique for a wide range of applications

    Electroencephalographic Responses to Frictional Stimuli: Measurement Setup and Processing Pipeline

    Get PDF
    Tactility is a key sense in the human interaction with the environment. The understanding of tactile perception has become an exciting area in industrial, medical and scienti c research with an emphasis on the development of new haptic technologies. Surprisingly, the quanti cation of tactile perception has, compared to other senses, only recently become a eld of scienti c investigation. The overall goal of this emerging scienti c discipline is an understanding of the causal chain from the contact of the skin with materials to the brain dynamics representing recognition of and emotional reaction to the materials. Each link in this chain depends on individual and environmental factors ranging from the in uence of humidity on contact formation to the role of attention for the perception of touch. This thesis reports on the research of neural correlates to the frictional stimulation of the human ngertip. Event-related electroencephalographic potentials (ERPs) upon the change in ngertip friction are measured and studied, when pins of a programmable Braille-display were brought into skin contact. In order to contribute to the understanding of the causal chain mentioned above, this work combines two research areas which are usually not connected to each other, namely tribology and neuroscience. The goal of the study is to evaluate contributions of friction to the process of haptic perception. Key contributions of this thesis are: 1) Development of a setup to simultaneously record physical forces and ERPs upon tactile stimulation. 2) Implementation of a dedicated signal processing pipeline for the statistical analysis of ERP -amplitudes, -latencies and -instantaneous phases. 3) Interpretation of skin friction data and extraction of neural correlates with respect to varying friction intensities. The tactile stimulation of the ngertip upon raising and lowering of di erent lines of Braille-pins (one, three and ve) caused pronounced N50 and P100 components in the event-related ERPsequences, which is in line with the current literature. Friction between the ngertip and the Braille-system exhibited a characteristic temporal development which is attributed to viscoelastic skin relaxation. Although the force stimuli varied by a factor of two between the di erent Braillepatterns, no signi cant di erences were observed between the amplitudes and latencies of ERPs after standard across-trial averaging. Thus, for the rst time a phase measure for estimating singletrial interactions of somatosensory potentials is proposed. Results show that instantaneous phase coherency is evoked by friction, and that higher friction induces stronger and more time-localized phase coherencyDie Taktilität ist ein zentraler Sinn in der Interaktion mit unserer Umwelt. Das Bestreben, fundierte Erkenntnisse hinsichtlich der taktilenWahrnehmung zu gewinnen erhält groÿen Zuspruch in der industriellen, medizinischen und wissenschaftlichen Forschung, meist mit einem Fokus auf der Entwicklung von haptischen Technologien. Erstaunlicherweise ist jedoch die wissenschaftliche Quanti zierung der taktilen Wahrnehmung, verglichen mit anderen Sinnesmodalitäten, erst seit kurzem ein sich entwickelnder Forschungsbereich. Fokus dieser Disziplin ist es, die kognitive und emotionale Reaktion nach physischem Kontakt mit Materialien zu beschreiben, und die kausale Wirkungskette von der Berührung bis zur Reaktion zu verstehen. Dabei unterliegen die einzelnen Faktoren dieser Kette sowohl individuellen als auch externen Ein üssen, welche von der Luftfeuchtigkeit während des Kontaktes bis hin zur Rolle der Aufmerksamkeit für die Wahrnehmung reichen. Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von neuronalen Korrelaten nach Reibungsstimulation des menschlichen Fingers. Dazu wurden Reibungsänderungen, welche durch den Kontakt der menschlichen Fingerspitze mit schaltbaren Stiften eines Braille-Display erzeugt wurden, untersucht und die entsprechenden neuronalen Korrelate aufgezeichnet. Um zu dem Verst ändnis der oben erwähnten Wirkungskette beizutragen, werden Ansätze aus zwei für gewöhnlich nicht zusammenhängenden Forschungsbereichen, nämlich der Tribologie und der Neurowissenschaft, kombiniert. Folgende Beiträge sind Hauptbestandteile dieser Arbeit: 1) Realisierung einer Messumgebung zur simultanen Ableitung von Kräften und ereigniskorrelierten Potentialen nach taktiler Stimulation der Fingerspitze. 2) Aufbau einer speziellen Signalverarbeitungskette zur statistischen Analyse von stimulationsabh ängigen EEG -Amplituden, -Latenzen und -instantanen Phasen. 3) Interpretation der erhobenen Reibungsdaten und Extraktion neuronaler Korrelate hinsichtlich variierender Stimulationsintensitäten. Unsere Resultate zeigen, dass die taktile Stimulation der Fingerspitze nach Anheben und Senken von Braille-Stiften zu signi kanten N50 und P100 Komponenten in den ereigniskorrelierten Potentialen führt, im Einklang mit der aktuellen Literatur. Die Reibung zwischen der Fingerspitze und dem Braille-System zeigte einen charakteristischen Signalverlauf, welcher auf viskoelastische Hautrelaxation zurückzuführen ist. Trotz der um einen Faktor zwei verschiedenen Intensit ätsunterschiede zwischen den Stimulationsmustern zeigten sich keine signi kanten Unterschiede zwischen den einfach gemittelten Amplituden der evozierten Potentialen. Erstmalig wurde ein Phasen-Maÿ zur Identi zierung von Unterschieden zwischen somatosensorischen "single-trial" Interaktionen angewandt. Diese Phasenanalyse zeigte, im Gegensatz zur Amplituden- und Latenzanalyse, deutlichere und signi kantere Unterschiede zwischen den Stimulationsparadigmen. Es wird gefolgert, dass Kohärenz zwischen den Momentanphasen durch Reibungsereignisse herbeigef ührt wird und dass durch stärkere Reibung diese Kohärenz, im zeitlichen Verlauf, stärker und lokalisierter wird

    The neural basis of perceived intensity in natural and artificial touch

    Get PDF
    Electrical stimulation of sensory nerves is a powerful tool for studying neural coding because it can activate neural populations in ways that natural stimulation cannot. Electrical stimulation of the nerve has also been used to restore sensation to patients who have suffered the loss of a limb. We have used long-term implanted electrical interfaces to elucidate the neural basis of perceived intensity in the sense of touch. To this end, we assessed the sensory correlates of neural firing rate and neuronal population recruitment independently by varying two parameters of nerve stimulation: pulse frequency and pulse width. Specifically, two amputees, chronically implanted with peripheral nerve electrodes, performed each of three psychophysical tasks-intensity discrimination, magnitude scaling, and intensity matching-in response to electrical stimulation of their somatosensory nerves. We found that stimulation pulse width and pulse frequency had systematic, cooperative effects on perceived tactile intensity and that the artificial tactile sensations could be reliably matched to skin indentations on the intact limb. We identified a quantity we termed the activation charge rate (ACR), derived from stimulation parameters, that predicted the magnitude of artificial tactile percepts across all testing conditions. On the basis of principles of nerve fiber recruitment, the ACR represents the total population spike count in the activated neural population. Our findings support the hypothesis that population spike count drives the magnitude of tactile percepts and indicate that sensory magnitude can be manipulated systematically by varying a single stimulation quantity
    • …
    corecore