14,039 research outputs found

    Annotated Bibliography: Anticipation

    Get PDF

    Personality Is Reflected in the Brain's Intrinsic Functional Architecture

    Get PDF
    Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses

    Autonomic regulation in response to stress : the influence of anticipatory emotion regulation strategies and trait rumination

    Get PDF
    According to the neurocognitive framework for regulation expectation, adaptively regulating emotions in anticipation of a stressful event should help individuals deal with the stressor itself. The goal of this study was twofold: first, the authors compared the influence of adaptive versus maladaptive anticipatory emotion regulation (ER) on the autonomic system during anticipation of, confrontation with, and recovery from a stressor; second, they explored whether trait rumination moderated this relationship. The authors collected data from 56 healthy female undergraduates during a public speaking task. The task involved 4 phases: baseline, anticipatory ER, stressor, and recovery. Participants were assigned to 1 of 2 anticipatory ER instructions (reappraisal or catastrophizing). Heart rate variability (HRV) indexed autonomic regulation. Results confirmed that HRV was higher in the reappraisal than in the catastrophizing group (over all time points, except for baseline). Trait rumination levels moderated the effect of anticipatory ER strategy on HRV during the stressor phase. Specifically, whereas for low ruminators reappraisal (versus catastrophizing) in the anticipation phase led to higher HRV when confronted to the stressor, high ruminators demonstrated lower HRV in that same condition. To conclude, over all participants, using reappraisal during the anticipation phase allowed participants to better cope with stress. However, only low, but not high ruminators could profit from the beneficial effect of anticipatory reappraisal on autonomic regulation. Even though further research is needed, this study suggests that, in female undergraduates, the tendency to ruminate is associated with abnormal anticipatory ER that might hinder an adaptive response to a stressor

    Network Approaches to Understand Individual Differences in Brain Connectivity: Opportunities for Personality Neuroscience

    Get PDF
    Over the past decade, advances in the interdisciplinary field of network science have provided a framework for understanding the intrinsic structure and function of human brain networks. A particularly fruitful area of this work has focused on patterns of functional connectivity derived from noninvasive neuroimaging techniques such as functional magnetic resonance imaging (fMRI). An important subset of these efforts has bridged the computational approaches of network science with the rich empirical data and biological hypotheses of neuroscience, and this research has begun to identify features of brain networks that explain individual differences in social, emotional, and cognitive functioning. The most common approach estimates connections assuming a single configuration of edges that is stable across the experimental session. In the literature, this is referred to as a static network approach, and researchers measure static brain networks while a subject is either at rest or performing a cognitively demanding task. Research on social and emotional functioning has primarily focused on linking static brain networks with individual differences, but recent advances have extended this work to examine temporal fluctuations in dynamic brain networks. Mounting evidence suggests that both the strength and flexibility of time-evolving brain networks influence individual differences in executive function, attention, working memory, and learning. In this review, we first examine the current evidence for brain networks involved in cognitive functioning. Then we review some preliminary evidence linking static network properties to individual differences in social and emotional functioning. We then discuss the applicability of emerging dynamic network methods for examining individual differences in social and emotional functioning. We close with an outline of important frontiers at the intersection between network science and neuroscience that will enhance our understanding of the neurobiological underpinnings of social behavior

    Brain effects of mindfulness in three modalities: functional activation and connectivity during task and rest

    Get PDF

    Disruption to control network function correlates with altered dynamic connectivity in the wider autism spectrum.

    Get PDF
    Autism is a common developmental condition with a wide, variable range of co-occurring neuropsychiatric symptoms. Contrasting with most extant studies, we explored whole-brain functional organization at multiple levels simultaneously in a large subject group reflecting autism's clinical diversity, and present the first network-based analysis of transient brain states, or dynamic connectivity, in autism. Disruption to inter-network and inter-system connectivity, rather than within individual networks, predominated. We identified coupling disruption in the anterior-posterior default mode axis, and among specific control networks specialized for task start cues and the maintenance of domain-independent task positive status, specifically between the right fronto-parietal and cingulo-opercular networks and default mode network subsystems. These appear to propagate downstream in autism, with significantly dampened subject oscillations between brain states, and dynamic connectivity configuration differences. Our account proposes specific motifs that may provide candidates for neuroimaging biomarkers within heterogeneous clinical populations in this diverse condition

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)
    • …
    corecore