24,146 research outputs found

    Emotional Empathy as a Mechanism of Synchronisation in Child-Robot Interaction

    Get PDF
    Simulating emotional experience, emotional empathy is the fundamental ingredient of interpersonal communication. In the speaker-listener scenario, the speaker is always a child, the listener is a human or a toy robot. Two groups of neurotypical children aged 6 years on average composed the population: one Japanese (n = 20) and one French (n = 20). Revealing potential similarities in communicative exchanges in both groups when in contact with a human or a toy robot, the results might signify that emotional empathy requires the implication of an automatic identification. In this sense, emotional empathy might be considered a broad idiosyncrasy, a kind of synchronisation, offering the mind a peculiar form of communication. Our findings seem to be consistent with the assumption that children’s brains would be constructed to simulate the feelings of others in order to ensure interpersonal synchronisation

    Functional and structural brain differences associated with mirror-touch synaesthesia

    Get PDF
    Observing touch is known to activate regions of the somatosensory cortex but the interpretation of this finding is controversial (e.g. does it reflect the simulated action of touching or the simulated reception of touch?). For most people, observing touch is not linked to reported experiences of feeling touch but in some people it is (mirror-touch synaesthetes). We conducted an fMRI study in which participants (mirror-touch synaesthetes, controls) watched movies of stimuli (face, dummy, object) being touched or approached. In addition we examined whether mirror touch synaesthesia is associated with local changes of grey and white matter volume in the brain using VBM (voxel-based morphometry). Both synaesthetes and controls activated the somatosensory system (primary and secondary somatosensory cortices, SI and SII) when viewing touch, and the same regions were activated (by a separate localiser) when feeling touch — i.e. there is a mirror system for touch. However, when comparing the two groups, we found evidence that SII seems to play a particular important role in mirror-touch synaesthesia: in synaesthetes, but not in controls, posterior SII was active for watching touch to a face (in addition to SI and posterior temporal lobe); activity in SII correlated with subjective intensity measures of mirror-touch synaesthesia (taken outside the scanner), and we observed an increase in grey matter volume within the SII of the synaesthetes' brains. In addition, the synaesthetes showed hypo-activity when watching touch to a dummy in posterior SII. We conclude that the secondary somatosensory cortex has a key role in this form of synaesthesia

    Brain Resilience: Shedding Light into the Black Box of Adventure Processes

    Get PDF
    Understanding of the active beneficial processes of adventure learning remains elusive. Resilience may provide one foundation for understanding the positive adaptation derived from Outdoor Adventure Education (OAE) and Adventure Therapy (AT) programming. From a neurological perspective, resilience may be explained by the brain’s innate capability to adapt its structure (growth of new cells) and function (re-wiring of existing cells) directly in response to environmental exposure. This paper explores the role of known brain responses to experiences analogous to adventure programming based on themes from a key literature review. The fundamental paradigm of ‘stress and recovery’ contends that a balance of neurobiological processes help realign psychosocial equilibrium in the short term and over time. Through progressive, repeated exposure to custom-built outdoor challenges, the concept of brain resilience may provide a scientific platform for understanding the mechanisms of achieving meaningful, authentic and healthy outcomes. It could also help to begin to illuminate a section of the black box of adventure processes

    Beta event-related desynchronization as an index of individual differences in processing human facial expression: further investigations of autistic traits in typically developing adults

    Get PDF
    The human mirror neuron system (hMNS) has been associated with various forms of social cognition and affective processing including vicarious experience. It has also been proposed that a faulty hMNS may underlie some of the deficits seen in the autism spectrum disorders (ASDs). In the present study we set out to investigate whether emotional facial expressions could modulate a putative EEG index of hMNS activation (mu suppression) and if so, would this differ according to the individual level of autistic traits [high versus low Autism Spectrum Quotient (AQ) score]. Participants were presented with 3 s films of actors opening and closing their hands (classic hMNS mu-suppression protocol) while simultaneously wearing happy, angry, or neutral expressions. Mu-suppression was measured in the alpha and low beta bands. The low AQ group displayed greater low beta event-related desynchronization (ERD) to both angry and neutral expressions. The high AQ group displayed greater low beta ERD to angry than to happy expressions. There was also significantly more low beta ERD to happy faces for the low than for the high AQ group. In conclusion, an interesting interaction between AQ group and emotional expression revealed that hMNS activation can be modulated by emotional facial expressions and that this is differentiated according to individual differences in the level of autistic traits. The EEG index of hMNS activation (mu suppression) seems to be a sensitive measure of the variability in facial processing in typically developing individuals with high and low self-reported traits of autism

    Empathic Agent Technology (EAT)

    Get PDF
    A new view on empathic agents is introduced, named: Empathic Agent Technology (EAT). It incorporates a speech analysis, which provides an indication for the amount of tension present in people. It is founded on an indirect physiological measure for the amount of experienced stress, defined as the variability of the fundamental frequency of the human voice. A thorough review of literature is provided on which the EAT is founded. In addition, the complete processing line of this measure is introduced. Hence, the first generally applicable, completely automated technique is introduced that enables the development of truly empathic agents

    The social brain: neural basis of social knowledge

    Get PDF
    Social cognition in humans is distinguished by psychological processes that allow us to make inferences about what is going on inside other people—their intentions, feelings, and thoughts. Some of these processes likely account for aspects of human social behavior that are unique, such as our culture and civilization. Most schemes divide social information processing into those processes that are relatively automatic and driven by the stimuli, versus those that are more deliberative and controlled, and sensitive to context and strategy. These distinctions are reflected in the neural structures that underlie social cognition, where there is a recent wealth of data primarily from functional neuroimaging. Here I provide a broad survey of the key abilities, processes, and ways in which to relate these to data from cognitive neuroscience
    corecore