5,167 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Design and implementation of the node identity internetworking architecture

    Get PDF
    The Internet Protocol (IP) has been proven very flexible, being able to accommodate all kinds of link technologies and supporting a broad range of applications. The basic principles of the original Internet architecture include end-to-end addressing, global routeability and a single namespace of IP addresses that unintentionally serves both as locators and host identifiers. The commercial success and widespread use of the Internet have lead to new requirements, which include internetworking over business boundaries, mobility and multi-homing in an untrusted environment. Our approach to satisfy these new requirements is to introduce a new internetworking layer, the node identity layer. Such a layer runs on top of the different versions of IP, but could also run directly on top of other kinds of network technologies, such as MPLS and 2G/3G PDP contexts. This approach enables connectivity across different communication technologies, supports mobility, multi-homing, and security from ground up. This paper describes the Node Identity Architecture in detail and discusses the experiences from implementing and running a prototype

    Transparent and scalable client-side server selection using netlets

    Get PDF
    Replication of web content in the Internet has been found to improve service response time, performance and reliability offered by web services. When working with such distributed server systems, the location of servers with respect to client nodes is found to affect service response time perceived by clients in addition to server load conditions. This is due to the characteristics of the network path segments through which client requests get routed. Hence, a number of researchers have advocated making server selection decisions at the client-side of the network. In this paper, we present a transparent approach for client-side server selection in the Internet using Netlet services. Netlets are autonomous, nomadic mobile software components which persist and roam in the network independently, providing predefined network services. In this application, Netlet based services embedded with intelligence to support server selection are deployed by servers close to potential client communities to setup dynamic service decision points within the network. An anycast address is used to identify available distributed decision points in the network. Each service decision point transparently directs client requests to the best performing server based on its in-built intelligence supported by real-time measurements from probes sent by the Netlet to each server. It is shown that the resulting system provides a client-side server selection solution which is server-customisable, scalable and fault transparent

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Naming and Address Resolution in Heterogeneous Mobile Ad hoc Networks

    Get PDF
    This doctoral thesis deals with naming and address resolution in heterogeneous networks to be used in disaster scenarios. Such events could damage the communication infrastructure in parts or completely. To reestablish communication, Mobile Ad hoc Networks (MANETs) could be used where central entities have to be eliminated broadly. The main focus of the thesis lies on two things: an addressing scheme that helps to find nodes, even if they frequently change the subnet and the local addressing, by introducing an identifying name layer; and a MANET-adapted substitution of the Domain Name System (DNS) in order to resolve node identities to changing local addresses. We present our solution to provide decentralized name resolution based on different underlying routing protocols embedded into an adaptive routing framework. Furthermore, we show how this system works in cascaded networks and how to extend the basic approach to realize location-aware service discovery.Auch im Buchhandel erhÀltlich: Naming and Address Resolution in Heterogeneous Mobile Ad hoc Networks / Sebastian Schellenberg Ilmenau : Univ.-Verl. Ilmenau, 2016. - xvi, 177 Seiten ISBN 978-3-86360-129-4 Preis (Druckausgabe): 17,60

    Backscatter from the Data Plane --- Threats to Stability and Security in Information-Centric Networking

    Full text link
    Information-centric networking proposals attract much attention in the ongoing search for a future communication paradigm of the Internet. Replacing the host-to-host connectivity by a data-oriented publish/subscribe service eases content distribution and authentication by concept, while eliminating threats from unwanted traffic at an end host as are common in today's Internet. However, current approaches to content routing heavily rely on data-driven protocol events and thereby introduce a strong coupling of the control to the data plane in the underlying routing infrastructure. In this paper, threats to the stability and security of the content distribution system are analyzed in theory and practical experiments. We derive relations between state resources and the performance of routers and demonstrate how this coupling can be misused in practice. We discuss new attack vectors present in its current state of development, as well as possibilities and limitations to mitigate them.Comment: 15 page
    • 

    corecore